DOI QR코드

DOI QR Code

Hydroxyapatite 소결체의 가소제 첨가에 따른 특성

Properties of hydroxyapatite sintered body added with plasticizer

  • 류수착 (부산대학교 나노메카트로닉스공학과) ;
  • 김재규 (부산대학교 나노메카트로닉스공학과) ;
  • 김승현 (부산대학교 나노융합기술학과)
  • Ryu, Su Chark (Department of Nanomechatronics Engineering, Pusan National University) ;
  • Kim, Jae Kyu (Department of Nanomechatronics Engineering, Pusan National University) ;
  • Kim, Seung Hyeon (Department of Nano Fusion Technology, Pusan National University)
  • 투고 : 2019.07.15
  • 심사 : 2019.08.05
  • 발행 : 2019.08.31

초록

HAp의 성형성과 열처리를 용이하게 하는 유기가소제를 사용하여 첨가량에 따른 강도(MPa)와 경도(Hv), 수축율(%) 및 생물학적 특성 중 항균력을 측정하였다. 가소제의 첨가량이 증가할수록 기계적 특성인 압축강도와 굽힘강도, 경도 등이 증가하였으나 가소제의 첨가량이 7%를 넘을 경우 오히려 기계적 특성이 감소하였다. 이는 허용치 이상의 가소제의 첨가는 성형 시 균열을 발생시키고 이러한 균열은 소결 시 내부에 미세균열 및 산화 시 기공의 발생을 촉진시켜 기계적 특성의 감소를 유발한다. 항균성 측정 결과 가소제 첨가량 에 관계없이 균은 검출되지 않았으며 우수한 항균력을 발휘하였다.

The strength (MPa), hardness (Hv), shrinkage (%) and biological properties of the HAp were measured by using an organic plasticizer which facilitates the molding and heat treatment. Mechanical properties such as compressive strength, bending strength and hardness were increased with increasing amount of plasticizer, but mechanical properties were decreased when plasticizer was added more than 7 %. This is because addition of the plasticizer above the allowable value causes cracking during molding, and such cracks promote the generation of microcracks and pores at the time of sintering, resulting in a decrease in mechanical properties. As a result of the antimicrobial activity test, no bacteria were detected regardless of the addition amount of plasticizer.

키워드

참고문헌

  1. I. Orly, M. Gregoire, J. Menanteau, M. Heughebaert and B. Kerebel, "Chemical changes in hydroxyapatite biomaterial underin vivo andin vitro biological conditions", Calcif. Tissue Int. 45 (1989) 20. https://doi.org/10.1007/BF02556656
  2. A. Fritsch, L. Dormieux, C. Hellmich and J. Sanahuja, "Mechanical behavior of hydroxyapatite biomaterials: an experimentally validated micromechanical model for elasticity and strength", J. Biomed. Mater. Res. Part A. 88 (2009) 149.
  3. A. Fritsch, L. Dormieux, C. Hellmich and J. Sanahuja, "Micromechanics of crystal interfaces in plycrystalline slid pases of prous media: fundamentals and application to strength of hydroxyapatite biomaterials", J. Mater. Sci. 42 (2007) 8824. https://doi.org/10.1007/s10853-007-1859-4
  4. G.E.J. Poinern, R.K. Brundavanam, X.T. Le and D. Fawcett, "The mechanical properties of a porous ceramic derived from a 30 nm sized particle powder of hydroxyapatite for potential hard tissue engineering applications", Am. J. Biomed. Eng. 2 (2012) 278. https://doi.org/10.5923/j.ajbe.20120206.07
  5. A. Fritsch, L. Dormierx, Christian and J. Sanahuja, "Micromechanics of crystal interfaces in polycrystalline solid phases of porous media: fundamentals and application to stength of hydroxyapatite biomaterials", J. Mater. Sci. 42 (2007) 8824. https://doi.org/10.1007/s10853-007-1859-4
  6. A. Fritsch, L. Dormieux and C. Hellmich, "Mechanical behavior of hydroxyapatite biomaterials: An experimentally validated micromechanical model for elasticity and strength", J. Biomed. Mater. Res. A. 88 (2009) 149.
  7. A.R Studart, F. Filser, P. Kocher and L.J. Gauckler, "In vitro lifetime of dental ceramics under cyclic loading in water", Biomaterials 28 (2007) 2695. https://doi.org/10.1016/j.biomaterials.2006.12.033
  8. S. Bose, S. Tarafder and A. Bandyopadhyay, "Hydroxyapatite coatings for metallic implants", Hydroxyapatite (HAp) for Biomedical Applications, Woodhead. 1 (2015) 147.
  9. S.S. Kim, M.S. Park and B.S. Kim., "Poly(lactide-coglycolide)/hydroxyapatite composite scaffolds for bone tissue engineering", Biomaterials 27 (2006) 1399. https://doi.org/10.1016/j.biomaterials.2005.08.016
  10. J.H. Jung and S.J. Lee, "Effect of organic additives on microstructure and green density of zirconia granules using water solvent", J. Korean Powder Metall. Inst. 24 (2017) 147. https://doi.org/10.4150/KPMI.2017.24.2.147
  11. M.J. Gorbunoff, "The interaction of proteins with hydroxyapatite: I. Role of protein charge and structure", Anal. Biochem. 136 (1984) 425. https://doi.org/10.1016/0003-2697(84)90239-2
  12. G. Yin, Z. Liu, J. Zhan, F. Ding and N. Yuan, "Impacts of the surface charge property on protein adsorption on hydroxyapatite", Chem. Eng. J. 87 (2002) 181. https://doi.org/10.1016/S1385-8947(01)00248-0
  13. S. Tsuru, N. Shinomiya, Y. Katsura, Y. Uwabe, M. Noritake and M. Rokutanda, "Adsorption and preparation of human viruses using hydroxyapatite column", Bio-Med. Mater. Eng. 1 (1991) 143. https://doi.org/10.3233/BME-1991-1301
  14. E.C. Reynolds and A. Wong, "Effect of adsorbed protein on hydroxyapatite zeta potential and streptococcus mutans adherence", Infect. Immun. 39 (1983) 1285. https://doi.org/10.1128/IAI.39.3.1285-1290.1983
  15. M.J. Gorbunoff, "The interaction of proteins with hydroxyapatite: II. Role of acidic and basic groups", Anal. Biochem. 13 (1984) 433. https://doi.org/10.1016/0003-2697(84)90240-9