DOI QR코드

DOI QR Code

Changes in the Concentration and Localization of Accumulated Mercury in Kidney, Liver, and Spleen of Mice over Time

생쥐 신장, 간, 비장 내 시간에 따른 수은 농도 변화와 수은 화합물의 위치

  • Kim, Yu Seon (Department of Biology, College of Life Science and Natural Resources, Sunchon National University) ;
  • Kim, Young Eun (Department of Biology, College of Life Science and Natural Resources, Sunchon National University) ;
  • Cho, Hyun Wook (Department of Biology, College of Life Science and Natural Resources, Sunchon National University)
  • 김유선 (순천대학교 생명산업과학대학 생물학과) ;
  • 김영은 (순천대학교 생명산업과학대학 생물학과) ;
  • 조현욱 (순천대학교 생명산업과학대학 생물학과)
  • Received : 2019.04.23
  • Accepted : 2019.08.07
  • Published : 2019.08.30

Abstract

This study investigated the localization and changes in the concentration of injected mercury in the kidney, liver, and spleen of mice. To evaluate changes in the concentration of mercury over time, the mice were euthanized 10, 150, and 300 days post-treatment. Localization of accumulated mercury was identified by the autometallography method. Mercury was densely located in the supranuclear cytoplasm of epithelial cells of proximal tubules of the kidney but was not detected in the glomerulus 10 days post-treatment. In the liver, mercury was mainly found in hepatocytes around the portal vein and in sinusoidal Kupffer cells 10 days post-treatment. Mercury was scattered throughout both white and red pulp of the spleen 10 days post-treatment. In terms of changes in the concentration of mercury, the levels were lower in the renal cortex and medulla 150 and 300 days post-treatment as compared with those 10 days post-treatment. Mercury was found at low concentrations in liver hepatocytes 150 and 300 days post-treatment. The mercury concentration was also low in both the white and red pulp of the spleen 150 and 300 days post-treatment. Therefore, the concentrations of accumulated mercury in the kidney, liver, and spleen 150 and 300 days post-treatment were lower than those 10 days post-treatment. We identified the localization of mercury in cells and tissues of several organs and observed that accumulated mercury in organs decreased naturally over time.

본 연구에서는 생쥐 신장, 간, 비장 내 축적된 수은의 위치와 아울러서 시간에 따른 수은 농도 변화를 조사하였다. 수은 투여 종료 후 10일, 150일, 300일에 생쥐를 희생하여 수은 농도변화를 분석하였다. 10일에 희생시킨 생쥐 신장의 경우, 근위세뇨관 상피세포의 핵 위쪽 세포질에 수은이 다량으로 분포하였으나, 사구체에는 분포하지 않았다. 간의 경우, 수은이 주로 간문맥 주위에 있는 간세포와 굴모세혈관에 있는 Kupffer 세포에 분포하였다. 10일에 희생시킨 비장의 경우, 백색 수질과 적색 수질에 수은이 흩어져 분포하였다. 수은의 농도 변화에 있어서, 150일과 300일에 희생시킨 신장의 피질과 수질에 축적되어 있던 수은이 낮은 농도로 나타났다. 역시 간세포에 축적되어 있던 수은도 150일과 300일의 경우, 낮은 농도로 나타났다. 비장의 경우, 백수와 적수 조직에 있던 수은 농도가 감소되었다. 이런 결과를 통해 세포나 조직에 축적되어 있던 수은의 위치가 확인되었으며, 또한 이 결과는 기관에 축적되어 있던 수은 농도가 시간이 지남에 따라 자연스럽게 감소된다는 사실을 확인해 주고 있다.

Keywords

References

  1. Agarwal, R. and Behari, J. R. 2007. Role of selenium in mercury intoxication in mice. Ind. Health 45, 388-395. https://doi.org/10.2486/indhealth.45.388
  2. Alkaissi, H., Ekstrand, J., Jawad, A., Nielsen, J. B., Havarinasab, S., Soderkvist, P. and Hultman, P. 2016. Genome-wide association study to identify genes related to renal mercury concentrations in mice. Environ. Health Perspect. 124, 920-926. https://doi.org/10.1289/ehp.1409284
  3. Al-Saleh, I., El-Doush, I., Shinwari, N., Al-Baradei, R., Khogali, F. and Al-Amodi, M. 2005. Does low mercury containing skin-lightening cream (fair & lovely) affect the kidney, liver, and brain of female mice? Cutan. Ocul. Toxicol. 24, 11-29. https://doi.org/10.1081/CUS-200046179
  4. Aposhian, H. V., Maiorino, R. M., Gonzalez-Ramirez, D., Zuniga-Charles, M., Xu, Z., Hurlbut, K. M., Junco-Munoz, P., Dart, R. C. and Aposhian, M. M. 1995. Mobilization of heavy metals by newer, therapeutically useful chelating agents. Toxicology 97, 23-38. https://doi.org/10.1016/0300-483X(95)02965-B
  5. Bates, M. N. 2006. Mercury amalgam dental fillings: an epidemiologic assessment. Int. J. Hyg. Environ. Health 209, 309-316. https://doi.org/10.1016/j.ijheh.2005.11.006
  6. Brandao, R., Moresco, R. N., Belle, L. P., Leite, M. R., de Freitas, M. L., Bianchini, A. and Nogueira, C. W. 2011. Diphenyl diselenide potentiates nephrotoxicity induced by mercuric chloride in mice. J. Appl. Toxicol. 31, 773-782. https://doi.org/10.1002/jat.1631
  7. Brandao, R., Santos, F. W., Zeni, G., Rocha, J. B. and Nogueira, C. W. 2006. DMPS and N-acetylcysteine induced renal toxicity in mice exposed to mercury. Biometals 19, 389-398. https://doi.org/10.1007/s10534-005-4020-3
  8. Bridges, C. C., Joshee, L. and Zalups, R. K. 2011. MRP2 and the handling of mercuric ions in rats exposed acutely to inorganic and organic species of mercury. Toxicol. Appl. Pharmacol. 251, 50-58. https://doi.org/10.1016/j.taap.2010.11.015
  9. Bridges, C. C., Joshee, L. and Zalups, R. K. 2014. Aging and the disposition and toxicity of mercury in rats. Exp. Gerontol. 53, 31-39. https://doi.org/10.1016/j.exger.2014.02.006
  10. Cho, H. W., Kim, M. H., Hwang, K. Y. and Yee, S. T. 1997. Detection of mercury in kidney, liver, spleen and cerebellum of the mouse by autometallography. Kor. J. Toxicol. 13, 401-408.
  11. Christensen, M. M. 1996. Histochemical localization of autometallographically detectable mercury in tissues of the immune system from mice exposed to mercuric chloride. Histochem. J. 28, 217-225. https://doi.org/10.1007/BF02331446
  12. Clarkson, T. W., Magos, L. and Myers, G. J. 2003. The toxicology of mercury-current exposures and clinical manifestations. N. Engl. J. Med. 349, 1731-1737. https://doi.org/10.1056/NEJMra022471
  13. Clarkson, T. W., Vyas, J. B. and Ballatori, N. 2007. Mechanisms of mercury disposition in the body. Am. J. Ind. Med. 50, 757-764. https://doi.org/10.1002/ajim.20476
  14. Cunha, E. M., Cherdwongcharoensuk, D. and Aguas, A. P. 2003. Quantification of particles of lethal mercury in mouse viscera: high-resolution study of mercury in cells and tissues. Toxicol. Ind. Health 19, 55-61. https://doi.org/10.1191/0748233703th175oa
  15. Cunha, E. M., Silva, D. P. and Aguas, A. P. 2003. High-resolution identification of mercury in particles in mouse kidney after acute lethal exposure. Biometals 16, 583-590. https://doi.org/10.1023/A:1023451407164
  16. Danscher, G. and Montagnese, C. 1994. Autometallographic localization of synaptic vesicular zinc and lysosomal gold, silver, and mercury. J. Histotechnol. 17, 15-22. https://doi.org/10.1179/his.1994.17.1.15
  17. Danscher, G., Stoltenberg, M. and Juhl, S. 1994. How to detect gold, silver and mercury in human brain and other tissues by autometallographic silver amplification. Neuropathol. Appl. Neurobiol. 20, 454-467. https://doi.org/10.1111/j.1365-2990.1994.tb00996.x
  18. de Freitas, A. S., Funck, V. R., Rotta Mdos, S., Bohrer, D., Morschbacher, V., Puntel, R. L., Nogueira, C. W., Farina, M., Aschner, M. and Rocha, J. B. 2009. Diphenyl diselenide, a simple organoselenium compound, decreases methylmercury-induced cerebral, hepatic and renal oxidative stress and mercury deposition in adult mice. Brain Res. Bull. 79, 77-84. https://doi.org/10.1016/j.brainresbull.2008.11.001
  19. Ekstrand, J., Nielsen, J. B., Havarinasab, S., Zalups, R. K., Soderkvist, P. and Hultman, P. 2010. Mercury toxicokinetics-dependency on strain and gender. Toxicol. Appl. Pharmacol. 243, 283-291. https://doi.org/10.1016/j.taap.2009.08.026
  20. Emanuele, M. A., LaPaglia, N., Steiner, J., Jabamoni, K., Hansen, M., Kirsteins, L. and Emanuele, N. V. 1998 Reversal of ethanol-induced testosterone suppression in peripubertal male by opiate blockade. Alcoholism: Clin. Exp. Res. 22, 1199-1204. https://doi.org/10.1111/j.1530-0277.1998.tb03899.x
  21. Eto, K., Yasutake, A., Miyamoto, K., Tokunaga, H. and Otsuka, Y. 1997. Chronic effects of methylmercury in rats. II. Pathological aspects. Tohoku J. Exp. Med. 182, 197-205. https://doi.org/10.1620/tjem.182.197
  22. Farina, M., Brandao, R., de Lara, F. S., Pagliosa, L. B., Soares, F. A., Souza, D. O. and Rocha, J. B. 2003. Profile of nonprotein thiols, lipid peroxidation and delta-aminolevulinate dehydratase activity in mouse kidney and liver in response to acute exposure to mercuric chloride and sodium selenite. Toxicology 184, 179-187. https://doi.org/10.1016/S0300-483X(02)00576-0
  23. Grandjean, P., Budtz-Jorgensen, E., Steuerwald, U., Heinzow, B., Needham, L. L., Jorgensen, P. J. and Weihe, P. 2003. Attenuated growth of breast-fed children exposed to increased concentrations of methylmercury and polychlorinated biphenyls. FASEB J. 17, 699-701. https://doi.org/10.1096/fj.02-0661fje
  24. Griem, P., Scholz, E., Turfeld, M., Zander, D., Wiesner, U., Dunemann, L. and Gleichmann, E. 1997. Strain differences in tissue concentrations of mercury in inbred mice treated with mercuric chloride. Toxicol. Appl. Pharmacol. 144, 163-170. https://doi.org/10.1006/taap.1997.8124
  25. Havarinasab, S., Bjorn, E., Nielsen, J. B. and Hultman, P. 2007. Mercury species in lymphoid and non-lymphoid tissues after exposure to methyl mercury: correlation with autoimmune parameters during and after treatment in susceptible mice. Toxicol. Appl. Pharmacol. 221, 21-28. https://doi.org/10.1016/j.taap.2007.02.009
  26. Jin, G. B., Inoue, S., Urano, T., Cho, S., Ouchi, Y. and Cyong, J. C. 2002. Induction of anti-metallothionein antibody and mercury treatment decreases bone mineral density in mice. Toxicol. Appl. Pharmacol. 185, 98-110. https://doi.org/10.1006/taap.2002.9531
  27. Joshi, D., Mittal, D. K., Shukla, S., Srivastav, A. K. and Srivastav, S. K. 2014. N-acetyl cysteine and selenium protects mercuric chloride-induced oxidative stress and antioxidant defense system in liver and kidney of rats: a histopathological approach. J. Trace Elem. Med. Biol. 28, 218-226. https://doi.org/10.1016/j.jtemb.2013.12.006
  28. Karapehlivan, M., Ogun, M., Kaya, I., Ozen, H., Deveci, H. A. and Karaman, M. 2014. Protective effect of omega-3 fatty acid against mercury chloride intoxication in mice. J. Trace Elem. Med. Biol. 28, 94-99. https://doi.org/10.1016/j.jtemb.2013.08.004
  29. Khan, H., Khan, M. F., Jan, S. U., Mukhtiar, M., Ullah, N. and Anwar, N. 2012. Role of glutathione in protection against mercury induced poisoning. Pak. J. Pharm. Sci. 25, 395-400.
  30. Kim, S. H., Johnson, V. J. and Sharma, R. P. 2003. Oral exposure to inorganic mercury alters T lymphocyte phenotypes and cytokine expression in BALB/c mice. Arch. Toxicol. 77, 613-620. https://doi.org/10.1007/s00204-003-0497-0
  31. Kostial, K., Kargacin, B., Blanusa, M., Piasek, M., Jones, M. M. and Singh, P. K. 1994. Monoisoamyl meso-2,3-dimercaptosuccinate as a delayed treatment for mercury removal in rats. Environ. Health Perspect. 102 Suppl 3, 309-311.
  32. Liu, J., Lu, Y. F., Li, W. K., Zhou, Z. P., Li, Y. Y., Yang, X., Li, C., Du, Y. Z. and Wei, L. X. 2016. Mercury sulfides are much less nephrotoxic than mercury chloride and methylmercury in mice. Toxicol. Lett. 262, 153-160. https://doi.org/10.1016/j.toxlet.2016.10.003
  33. Martin, M. D. and Woods, J. S. 2006. The safety of dental amalgam in children. Expert Opin. Drug Saf. 5, 773-781. https://doi.org/10.1517/14740338.5.6.773
  34. Moreira, E. L., de Oliveira, J., Dutra, M. F., Santos, D. B., Goncalves, C. A., Goldfeder, E. M., de Bem, A. F., Prediger, R. D., Aschner, M. and Farina, M. 2012. Does methylmercury-induced hypercholesterolemia play a causal role in its neurotoxicity and cardiovascular disease? Toxicol. Sci. 130, 373-382. https://doi.org/10.1093/toxsci/kfs252
  35. Oliveira, C., Joshee, L., George, H., Nijhara, S. and Bridges, C. 2017. Oral exposure of pregnant rats to toxic doses of methylmercury alters fetal accumulation. Reprod. Toxicol. 69, 265-275. https://doi.org/10.1016/j.reprotox.2017.03.008
  36. Othman, M. S., Safwat, G., Aboulkhair, M. and Abdel Moneim, A. E. 2014. The potential effect of berberine in mercury-induced hepatorenal toxicity in albino rats. Food Chem. Toxicol. 69, 175-181. https://doi.org/10.1016/j.fct.2014.04.012
  37. Passos, C. J., Mergler, D., Lemire, M., Fillion, M. and Guimaraes, J. R. 2007. Fish consumption and bioindicators of inorganic mercury exposure. Sci. Total Environ. 373, 68-76. https://doi.org/10.1016/j.scitotenv.2006.11.015
  38. Perottoni, J., Rodrigues, O. E., Paixao, M. W., Zeni, G., Lobato, L. P., Braga, A. L., Rocha, J. B. and Emanuelli, T. 2004. Renal and hepatic ALA-D activity and selected oxidative stress parameters of rats exposed to inorganic mercury and organoselenium compounds. Food Chem. Toxicol. 42, 17-28. https://doi.org/10.1016/j.fct.2003.08.002
  39. Schlawicke Engstrom, K., Stromberg, U., Lundh, T., Johansson, I., Vessby, B., Hallmans, G., Skerfving, S. and Broberg, K. 2008. Genetic variation in glutathione-related genes and body burden of methylmercury. Environ. Health Perspect. 116, 734-739. https://doi.org/10.1289/ehp.10804
  40. Schwindt, A. R., Fournie, J. W., Landers, D. H., Schreck, C. B. and Kent, M. L. 2008. Mercury concentrations in salmonids from western U.S. National Parks and relationships with age and macrophage aggregates. Environ. Sci. Technol. 42, 1365-1370. https://doi.org/10.1021/es702337m
  41. Shimojo, N., Kumagai, Y. and Nagafune, J. 2002. Difference between kidney and liver in decreased manganese superoxide dismutase activity caused by exposure of mice to mercuric chloride. Arch. Toxicol. 76, 383-387. https://doi.org/10.1007/s00204-002-0364-4
  42. Yasutake, A. and Nakamura, M. 2011. Induction by mercury compounds of metallothioneins in mouse tissues: inorganic mercury accumulation is not a dominant factor for metallothionein induction in the liver. J. Toxicol. Sci. 36, 365-372. https://doi.org/10.2131/jts.36.365
  43. Zalups, R. K. 2000. Molecular interactions with mercury in the kidney. Pharmacol. Rev. 52, 113-143.