Abstract
In spatial modulation (SM), both the signal symbol and spatial symbol, i.e., the index of the antenna from which signal symbol is transmitted, carry information. To increase the number of bits carried by spatial symbols, more transmit antennas are required. In the generalized SM (GSM), the same signal symbol is transmitted from a combination of antennas, resulting in a reduction in the number of antennas required to achieve a given spectral efficiency. In this paper, we propose a rotated-symbol GSM (RGSM), in which the signal symbol is rotated with an angle corresponding to the position of the antenna index within the combination. This increases the number of spatial symbols by a factor equivalent to the length of the antenna combinations of the GSM. Numerically, SM, GSM and RGSM require 128, 17 and 12 transmit antennas to convey seven bits through the spatial symbols. Simulation results show that RGSM performs relatively close to GSM, and in several system settings, their error performances coincide.