References
- T. K. Chandra and S. Ghosal, Extensions of strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables, Act. Math. Hung., 71 (1996), 327-336. https://doi.org/10.1007/BF00114421
- T. K. Chandra and S. Ghosal, The strong law of large numbers for weighted averages under dependence assumptions, J. Theor. Probab., 9 (1996), 797-809. https://doi.org/10.1007/BF02214087
- N. T. T. Hien and L. V. Thanh, On the weak laws of large numbers for sums of negatively associated random vectors in Hilbert spaces, Statist. Probab. Letts., 107 (2015), 236-245. https://doi.org/10.1016/j.spl.2015.08.030
- N. V. Huan, N. V. Quang, and N. T. Thuan, Baum-Katz type theorems for coordinatewise negatively associated random vectors in Hilbert spaces, Acta Math. Hungar., 144 (2014), 132-149. https://doi.org/10.1007/s10474-014-0424-2
- K. Joag-Dev and F. Proschan, Negative association of random variables with applications, Ann. Statist., 11 (1983), 286-295. https://doi.org/10.1214/aos/1176346079
- M. H. Ko, T. S. Kim, and K. H. Han, A note on the almost sure convergence for dependent random variables in a Hilbert space, J. Theoret. Probab., 22 (2009), 506-513. https://doi.org/10.1007/s10959-008-0144-z
- M. H. Ko, T. S. Kim, and Z. Y. Lin, The Hajeck-Renyi inequality for the AANA random variables and its applications, Taiwan J. Math., 9 (2005), no. 1, 111-122. https://doi.org/10.11650/twjm/1500407749
- A. T. Shen and R. C. Wu, Strong convergence for sequences of asymptotically almost negatively associated random variables, Stochastics, 86 (2014), no. 2, 291-303. https://doi.org/10.1080/17442508.2013.775289
- X. F. Tang, (2013) Some strong laws of large numbers for weighted sums of asymptotically almost negatively associated random variables, J. Inequal. Appl., (2013), no. 4, 11 pages.
- X. J.Wang, S. H. Hu, andW. Z. Yang, Convergence properties for asymptotically almost negatively associated sequence, Disc. Dyna. Nat. Soc., Article ID 21830 (2010), 15 pages.
- D. M. Yuan and J. An, Rosenthal type inequalities for asymptotically almost negatively associated random variables and applications, Science China Ser. A: Mathematics, 52 (2009), 1887-1904. https://doi.org/10.1007/s11425-009-0154-z
- D. M. Yuan and J. An, Laws of large numbers for Cesaro alpha-integrable random variables under dependence condition AANA or AQSI, Sinica. Engl. Ser., 28 (2012), no. 6, 1103-1118.
- D. M. Yuan and X. S. Wu, Limiting behaviors of the maximum of the partial sum for asymptotically negatively associated random variables under residual Cesaro alpha-integrability assumption, J. Statistical Plan. Infer., 140 (2010), 2395-2402. https://doi.org/10.1016/j.jspi.2010.02.011
- L. X. Zhang, Strassen's law of the iterated logarithm for negatively associated random vectors, Stoch. Process Appl., 95 (2001), 311-328. https://doi.org/10.1016/S0304-4149(01)00107-7