DOI QR코드

DOI QR Code

ON THE STABILITY OF AN ADDITIVE-QUARTIC SET-VALUED FUNCTIONAL EQUATION

  • Lee, Yang-Hi (Department of Mathematics Education Gongju National University of Education)
  • Received : 2018.12.15
  • Accepted : 2019.02.01
  • Published : 2019.02.15

Abstract

In this paper, I investigate a stability of the following set-valued functional equation $$f(x+3y){\oplus}10f(x+y){\oplus}7f(-x){\oplus}5f(x-y)=5f(x+2y){\oplus}f(x){\oplus}f(2x){\oplus}f(x-2y)$$ in the sense of P. $G{\check{a}}vruta$.

Keywords

References

  1. C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, in: Lec. Notes in Math. 580, Springer, Berlin, 1977.
  2. H. Y. Chu, A. Kim, and S. Y. Yoo, On the stability of the generalized cubic set-valued functional equation, Appl. Math. Lett. 37 (2014), 7-14. https://doi.org/10.1016/j.aml.2014.05.008
  3. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
  4. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  5. S. Y. Jang, C. Park, and Y. Cho, Hyers-Ulam stability of a generalized additive set-valued functional equation, J. Inequal. Appl. 101 (2013), 6 pages.
  6. H. A. Kenary, H. Rezaei et al., On the stability of set-valued functional equations with the fixed point alternative, Fixed Point Theory Appl. 81 (2012), 17 pages.
  7. G. Lu and C. Park, Hyers-Ulam stability of additive set-valued functional equations, Appl. Math. Lett. 24 (2011), 1312-1316. https://doi.org/10.1016/j.aml.2011.02.024
  8. Y. -H. Lee, On the stability of the monomial functional equation, Bull. Korean Math. Soc. 45 (2008), 397-403. https://doi.org/10.4134/BKMS.2008.45.2.397
  9. Y. H. Lee and K. W. Jun, On the Stability of Approximately Additive Mappings, Proc. Amer. Math. Soc. 128 (2000), 1361-1369. https://doi.org/10.1090/S0002-9939-99-05156-4
  10. C. Park, D. O'Regan, and R. Saadati, Stability of some seset-valued functional equations, Appl. Math. Lett. 24 (2011), 1910-1914. https://doi.org/10.1016/j.aml.2011.05.017
  11. M. Piszczek, The properties of functional inclusions and Hyers-Ulam stability, Aequat. Math. 85 (2013), 111-118. https://doi.org/10.1007/s00010-012-0119-0
  12. H. Radstrom, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169. https://doi.org/10.1090/S0002-9939-1952-0045938-2
  13. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  14. S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1960.