과제정보
연구 과제 주관 기관 : National Natural Science Foundation of China
참고문헌
- Amadei, B. and Goodman, R. (1981), "A 3-D constitutive relation for fractured rock masses", Proceedings of the International Symposium on the Mechanical Behavior of Structure Media, Ottawa, Canada, October.
- Bear, J. (1972), "Dynamics of fluids in porous media", Eng. Geol., 7(2), 174-175. https://doi.org/10.1016/0013-7952(73)90047-1.
- Bieniawski, Z.T. (1978), "Determining rock mass deformability: Experience from case histories", Int. J. Rock Mech. Min. Sci., 15(5), 237-247. https://doi.org/10.1016/0148-9062(78)90956-7.
- Barton, N. (2002), "Some new Q-value correlations to assist in site characterization and tunnel design", Int. J. Rock Mech. Min. Sci., 39(2), 185-216. https://doi.org/10.1016/S1365-1609(02)00011-4.
- Baghbanan, A. (2008), "Scale and stress effects on hydromechanical properties of fractured rock masses", Ph.D. Dissertation, KTH Royal Institute of Technology, Stockholm, Sweden.
- Bidgoli, M.N. and Jing, L. (2014), "Anisotropy of strength and deformability of fractured rocks", J. Rock Mech. Geotech. Eng., 6(2), 156-164. https://doi.org/10.1016/j.jrmge.2014.01.009.
- Bandpey, A.K., Shahriar, K., Sharifzadeh, M. and Marefvand, P. (2018), "Validation of 3D discrete fracture network model focusing on areal sampling methods-a case study on the powerhouse cavern of Rudbar Lorestan pumped storage power plant, Iran", Geomech. Eng., 16(1), 21-34. https://doi.org/10.12989/gae.2018.16.1.021.
- Cuisiat, F.D. and Haimson, B.C. (1992), "Scale effects in rock mass stress measurements", Int. J. Rock Mech. Min. Sci., 29(2), 99-117. https://doi.org/10.1016/0148-9062(92)92121-R.
- Cai, M. (2008), "Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries-insight from numerical modeling", Int. J. Rock Mech. Min. Sci., 45(5), 763-772. https://doi.org/ 10.1016/0148-9062(78)90956-7.
- Darlington, W.J., Ranjith, P.G. and Choi S.K. (2011), "The effect of specimen size on strength and other properties in laboratory testing of rock and rock-like cementitious brittle materials", Rock Mech. Rock. Eng., 44(5), 513-529. https://doi.org/10.1007/s00603-011-0161-6.
- Esmaieli, K., Hadjigeorgiou, J. and Grenon, M. (2010), "Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine", Int. J. Rock Mech. Min. Sci., 47(6), 915-926. https://doi.org/10.1016/j.ijrmms.2010.05.010.
- Gao, M., Liang, Z.Z, Jia, S.P, Li, Y.C and Yang, X.X. (2019), "An equivalent anchoring method for anisotropic rock masses in underground tunnelling", Tunn. Undergr. Sp. Technol., 85, 294-306. https://doi.org/10.1016/j.tust.2018.12.017.
- Hill R.j. (1963), "Elastic properties of reinforced solids: Some theoretical principles", J. Mech. Phys. Solids, 11(5), 357-372. https://doi.org/ 10.1016/0022-5096(63)90036-X.
- Heuze, F.E. (1980), "Scale effects in the determination of rock mass strength and deformability", Rock Mech. Rock. Eng., 12(3-4), 167-192. https://doi.org/10.1007/BF01251024.
- Hoek, E. (1983), "Underground excavations in rock", Eng. Geol., 19(3), 244-246. https://doi.org/10.1016/0013-7952(83)90009-1.
- Huang, N., Liu, R., Jiang, Y., Cheng, Y., and Li, B. (2019), "Shearflow coupling characteristics of a three-dimensional discrete fracture network-fault model considering stress-induced aperture variations", J. Hydrol., 571, 416-424. https://doi.org/10.1016/j.jhydrol.2019.01.068.
- Kulatilake, P.H.S.W. (1985), "Estimating elastic constants and strength of discontinuous rock", J. Geotech. Eng., 111(7), 847-864. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:7(847).
- Krauland, N., Soder, P. and Agmalm, G. (1989), "Determination of rock mass strength by rock mass classification-some experience and questions from boliden mines", Int. J. Rock Mech. Min. Sci., 26(1), 115-123. https://doi.org/10.1016/0148-9062(89)90531-7.
- Khani, A., Baghbanan, A. and Hashemolhosseini, H. (2013), "Numerical investigation of the effect of fracture intensity on deformability and REV of fractured rock masses", Int. J. Rock Mech. Min. Sci., 63, 104-112. https://doi.org/10.1016/j.ijrmms.2013.08.006.
- Long, J.C.S., Remer, J.S., Wilson, C.R. and Witherspoon, P.A. (1982), "Porous media equivalents for networks of discontinuous fractures", Water Resour. Res., 18(3), 645-658. https://doi.org/10.1029/wr018i003p00645.
- Li, G. and Tang, C.A. (2015), "A statistical meso-damage mechanical method for modeling trans-scale progressive failure process of rock", Int. J. Rock Mech. Min. Sci., 74, 133-150. https://doi.org/10.1016/j.ijrmms.2014.12.006.
- Lei, Q., Latham, J.P., Xiang, J. and Tsang, C.F. (2017), "Role of natural fractures in damage evolution around tunnel excavation in fractured rocks", Eng. Geol., 231, 100-113. https://doi.org/10.1016/j.enggeo.2017.10.013.
- Laghaei, M., Baghbanan, A., Hashemolhosseini, H. and Dehghanipoodeh, M. (2018), "Numerical determination of deformability and strength of 3D fractured rock mass", Int. J. Rock Mech. Min. Sci., 110, 246-256. https://doi.org/10.1016/j.ijrmms.2018.07.015.
- Li, Y.C., Sun, S.Y. and Tang, C.A. (2019), "Analytical prediction of the shear behaviour of rock joints with quantified waviness and unevenness through wavelet analysis", Rock Mech. Rock Eng., 1-13. https://doi.org/10.1007/s00603-019-01817-5.
- Neuman, S.P. (1987), "Stochastic continuum representation of fractured rock permeability as an alternative to the RVE and fracture network concepts", Proceedings of the 28th US Symposium of Rock Mechanics, Tucson, U.S.A., July.
- Oda, M. (1988), "A method for evaluating the representative elementary volume based on joint survey of rock masses", Can. Geotech. J., 25(3), 440-447. https://doi.org/10.1139/t88-049.
- Oh, J., Moon, T., Canbulat, I. and Moon, J.S. (2019), "Design of initial support required for excavation of underground cavern and shaft from numerical analysis", Geomech. Eng., 17(6), 573-581. https://doi.org/10.12989/gae.2019.17.6.573.
- Pouya, A. and Ghoreychi, M. (1998), "Determination of rock mass strength properties by homogenization", Int. J. Numer. Anal. Meth. Geomech., 25(13), 1285-1303. https://doi.org/10.1007/978-3-7091-2512-0-68.
- Prudencio, M. and Jan, M.V.S. (2007), "Strength and failure modes of rock mass models with non-persistent joints", Int. J. Rock Mech. Min. Sci., 44(6), 890-902. https://doi.org/10.1016/j.ijrmms.2007.01.005.
- Pariseau W.G., Puri, S. and Schmelter, S.C. (2008), "A new model for effects of impersistent joint sets on rock slope stability", Int. J. Rock Mech. Min. Sci., 45(2), 122-131. https://doi.org/10.1016/j.ijrmms.2007.05.001.
- Ribacchi, R. (2000), "Mechanical tests on pervasively jointed rock material: Insight into rock mass behavior", Rock Mech. Rock Eng., 33(4), 243-266. https://doi.org/10.1007/s006030070.
- Sarfarazi, V.H.H. and Alireza, B.S. (2017), "The effect of compression load and rock bridge geometry on the shear mechanism of weak plane", Geomech. Eng., 13(3), 431-446. https://doi.org/10.12989/gae.2017.13.3.431.
- Shemirani, A.B., Haeri, H., Sarfarazi, V. and Hedayat, A. (2017), "A review paper about experimental investigations on failure behaviour of non-persistent joint", Geomech. Eng., 13(4), 535-570. https://doi.org/10.12989/gae.2017.13.4.535.
- Tang, C.A. (1997), "Numerical simulation of progressive rock failure and associated seismicity", Int. J. Rock Mech. Min. Sci., 34(2), 249-261. https://doi.org/10.1016/S0148-9062(96)00039-3.
- Vazaios, I., Farahmand, K., Vlachopoulos, N. and Diederichs, M. S. (2018), "Effects of confinement on rock mass modulus: A synthetic rock mass modelling (SRM) study", J. Rock Mech. Geotech. Eng., 10(3), 436-456. https://doi.org/10.1016/j.jrmge.2018.01.002.
- Wang, M., Kulatilake, P.H.S.W., Um, J. and Narvaiz, J. (2002), "Estimation of REV size and three-dimensional hydraulic conductivity tensor for a fractured rock mass through a single well packer test and discrete fracture fluid flow modeling", Int. J. Rock Mech. Min. Sci., 39(7), 887-904. https://doi.org/10.1016/S1365-1609(02)00067-9.
- Wong, R.H.C., Tang, C.A., Chau, K.T. and Lin, P. (2002), "Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression", Eng. Fract. Mech., 69(17), 1853-1871. https://doi.org/10.1016/S0013-7944(02)00065-6.
- Wang, X.G., Jia, Z.X., Zhang, F.M. and Li, X.Q. (2010), The Principle of Network Simulation of Rock Mass Structure and Its Engineering Application, China Water Conservancy and Hydropower Press, Beijing, China.
- Wang, P.T., Yang, T.H., Xu, T., Cai, M.F. and Li, C.H. (2016), "Numerical analysis on scale effect of elasticity, strength and failure patterns of jointed rock masses", Geosci. J., 20(4), 539-549. https://doi.org/10.1007/s12303-015-0070-x.
- Wu, Z., Fan, L., Liu, Q. and Ma, G. (2017), "Micro-mechanical modeling of the macro-mechanical response and fracture behavior of rock using the numerical manifold method", Eng. Geol., 225, 49-60. https://doi.org/10.1016/j.enggeo.2016.08.018.
- Wu, N., Liang, Z.Z., Li, Y.C., Li, H., Li, W.R. and Zhang, M.L. (2019), "Stress-dependent anisotropy index of strength and deformability of jointed rock mass: Insights from a numerical study", Bull. Eng. Geol. Environ., 1-13. https://doi.org/10.1007/s10064-019-01483-5.
- Xu, T., Ranjith, P.G., Wasantha, P.L.P., Zhao, J., Tang, C.A. and Zhu, W.C. (2013), "Influence of the geometry of partiallyspanning joints on mechanical properties of rock in uniaxial compression", Eng. Geol., 167, 134-147. https://doi.org/10.1016/j.enggeo.2013.10.011.
- Yang, S.Q. and Jing, H.W. (2011), "Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression", Int. J. Fract., 168(2), 227-250. https://doi.org/10.1007/s10704-010-9576-4.
- Yang, J.P., Chen, W.Z., Yang, D.S. and Yuan, J.Q. (2015a), "Numerical determination of strength and deformability of fractured rock mass by FEM modeling", Comput. Geotech., 64, 20-31. https://doi.org/10.1016/j.compgeo.2014.10.011.
- Yang, X.X., Kulatilake, P.H.S.W., Jing, H.W. and Yang, S.Q. (2015b), "Numerical simulation of a jointed rock block mechanical behavior adjacent to an underground excavation and comparison with physical model test results", Tunn. Undergr. Sp. Technol., 50, 129-142. https://doi.org/10.1016/j.tust.2015.07.006.
- Yu, Q.L., Zhu, W.C., Tang, C.A. and Yang, T.H. (2014), "Impact of rock microstructures on failure processes-Numerical study based on DIP technique", Geomech. Eng., 7(4), 375-401. https://doi.org/10.12989/gae.2014.7.4.375.
- Zhang, W., Chen, J.P., Chen, H.E., Xu, D.Z. and Li, Y. (2013), "Determination of RVE with consideration of the spatial effect", Int. J. Rock Mech. Min. Sci., 61(7), 154-160. https://doi.org/10.1016/j.ijrmms.2013.02.013.
- Zhou, J.R., Wei, J., Yang, T.H., Zhu, W.C., Li, L.C. and Zhang, P.H. (2018), "Damage analysis of rock mass coupling joints, water and microseismicity", Tunn. Undergr. Sp. Technol., 71, 366-381. https://doi.org/10.1016/j.tust.2017.09.006.