Acknowledgement
Supported by : Central Universities
References
- AbuAisha, M., Eaton, D., Priest, J., Wong, R., Loret, B. and Kent, A.H. (2019), "Fully coupled hydro-mechanical controls on nondiffusive seismicity triggering front driven by hydraulic fracturing", J. Seismol., 23(1), 109-121. https://doi.org/10.1007/s10950-018-9795-0
- Benes, V., Boitsov, A., Fuzlullin, M., Hunter, J., Mays, W., Novak, J., Slezak, J., Stover, D., Tweeton, D. and Underhill, D. (2001), Manual of Acid in situ Leach Uranium Mining Technology, International Atomic Energy Agency, Vienna, Austria.
- De Silva, V.R.S., Ranjith, P.G., Perera, M.S.A., Wu, B. and Wanniarachchi, W.A.M. (2018), "A low energy rock fragmentation technique for in-situ leaching", J. Clean. Prod., 204, 586-606. https://doi.org/10.1016/j.jclepro.2018.08.296.
- Dershowitz, W.S., La-Pointe, P.R., and Doe, T.W., (2000), "Advances in discrete fracture network modeling", Proceeding of the U.S. EPA/NGWA Fractured Rock Conference, Portland, Oregon, U.S.A.
- Dippenaar, M.A., and Van Rooy, J.L., (2016), "On the cubic law and variably saturated flow through discrete open rough-walled discontinuities", Int. J. Rock Mech. Min. Sci., 89, 200-211. https://doi.org/10.1016/j.ijrmms.2016.09.011
- Dong, J.N., Chen, M., Jin, Y., Hong, G.B., Zaman, M. and Li, Y.W. (2019), "Study on micro-scale properties of cohesive zone in shale", Int. J. Solids Struct., 163, 178-193. https://doi.org/10.1016/j.ijsolstr.2019.01.004
- Easton, A.J. (2004), "Discrete fracture simulation of well capture zones in bedrock", M.Sc. Thesis, Queen's University at Kingston, Canada.
- Einstein, H.H. and Baecher, G.B. (1983), "Probabilistic and statistical methods in engineering geology", Rock Mech. Rock Eng., 16(1), 39-72. https://doi 0723-2632/83/0016/0039/$ 06.80. https://doi.org/10.1007/BF01030217
- Ghaderi, A., Taheri-Shakib, J. and Nik, M.A.S. (2018), "The distinct element method (DEM) and the extended finite element method (XFEM) application for analysis of interaction between hydraulic and natural fractures", J. Petrol. Sci. Eng., 171, 422-430. https://doi.org/10.1016/j.petrol.2018.06.083.
- Haque, N. and Norgate, T. (2014), "The greenhouse gas footprint of in-situ leaching of uranium, gold and copper in Australia", J. Clean. Prod., 84, 382-390. https://doi.org/10.1016/j.jclepro.2013.09.033.
- Hu, C., Chen, H.L., Chen, G. and Liu, J.H. (2019), "Detection of low-efficiency zones of water curtain system for underground LPG storage by a discrete fracture network model", Environ. Earth Sci., 78(1), 11. https://doi.org/10.1007/s12665-018-8006-1
- Hu, G.Z., Sun, C., Sun, M.F., Qin, W. and Linghu, J.S. (2018), "The case for enhanced coalbed methane using hydraulic fracturing in the geostructural belt", Energy Explor. Exploit., 36(6), 1629-1644. https://doi.org/10.1177/0144598718770697
- Hyman, J.D., Aldrich, G., Viswanathan, H., Makedonska, N. and Karra, S. (2016), "Fracture size and transmissivity correlations: Implications for transport simulations in sparse threedimensional discrete fracture networks following a truncated power law distribution of fracture size", Water Resour. Res., 52(8), 6472-6489. https://doi.org/10.1002/2016WR018806.
- Kamali B.A., Shahriar, K., Sharifzadeh, M. and Marefvand, P. (2018), "Validation of 3D discrete fracture network model focusing on areal sampling methods-a case study on the powerhouse cavern of rudbar lorestan pumped storage power plant, Iran", Geomech. Eng., 16(1), 21-34. https://doi.org/10.12989/gae.2018.16.1.021.
- Kamali B.A., Shahriar, K., Sharifzadeh, M. and Marefvand, P. (2019), "Comparison of methods for calculating geometrical characteristics of discontinuities in a cavern of the Rudbar Lorestan power plant", Bull. Eng. Geol. Environ., 78(2), 1073-1093. https://doi.org/10.1007/s10064-017-1145-x.
- Karimzade, E., Sharifzadeh, M., Zarei, H.R., Shahriar, K. and Seifabad, M.C. (2017), "Prediction of water inflow into underground excavations in fractured rocks using a 3D discrete fracture network (DFN) model", Arab. J. Geosci., 10(9), 1-14. https://doi.org/10.1007/s12517-017-2987-z.
- Kozikhin, R.A., Daminov, A.M., Fattakhov, I.G., Kuleshova, L.S. and Gabbasov, A.K. (2018), "Identifying the efficiency factors on the basis of evaluation of acidizing of carbonate reservoirs", IOP Conf. Ser. Earth Environ. Sci., 194(6), 062013-062018. https://doi:10.1088/1755-1315/194/6/062013.
- Kuhar, L.L., Breuer, P.L., Haque, N. and Robinson, D.J. (2018), "Considerations and potential economic advantages for the insitu recovery of gold from deep, hard-rock deposits", Miner. Eng., 121, 14-22. https://doi.org/10.1016/j.mineng.2018.02.026
- Li, Y.Y., Shang, Y.J. and Yang, P. (2018), "Modeling fracture connectivity in naturally fractured reservoirs: A case study in the Yanchang Formation, Ordos Basin, China", Fuel, 211, 789-796. https://doi.org/10.1016/j.fuel.2017.09.109.
- Liu, J., Wang, J.G., Leung, C.F. and Gao, F., (2018), "A fully coupled numerical model for microwave heating enhanced shale gas recovery", Energies, 11(6), 1-28. https://doi.org/10.3390/en11061608
- Martens, E., Zhang, H.G., Prommer, H.N., Greskowiak, J., Jeffrey, M. and Roberts, P. (2012), "In situ recovery of gold: Column leaching experiments and reactive transport modeling", Hydrometallurgy, 125, 16-23. https://doi.org/10.1016/j.hydromet.2012.05.005
- Medici, G., West, L.J. and Banwart, S.A. (2019), "Groundwater flow velocities in a fractured carbonate aquifer-type: Implications for contaminant transport", J. Contamin. Hydrol., 222, 1-16. https://doi.org/10.1016/j.jconhyd.2019.02.001
- Palleske, C. (2014), "A study of biases, assumptions and practical considerations for the use of discrete fracture networks in geomechanical practice", M.Sc. Thesis, Queen's University, Kingston, Canada.
- Petersen J. (2016), "Heap leaching as a key technology for recovery of values from low-grade ores-A brief overview", Hydrometallurgy, 165, 206-212. https://doi.org/10.1016/j.hydromet.2015.09.001
- Pokalai, K., Kulikowski, D., Johnson, R.L., Haghighi, M. and Cooke, D. (2016), "Development of a new approach for hydraulic fracturing in tight sand with pre-existing natural fractures", APPEA J., 56(1), 225-238. https://doi.org/10.1071/AJ15017.
- Renshaw, C.E. (1995), "On the relationship between mechanical and hydraulic apertures in rough-walled fractures", J. Geophys. Res. Solid Earth, 100(B12), 24629-24636. https://doi.org/10.1029/95JB02159.
- Rocha, A.C., Murad, M.A. and Le, T.D. (2017), "A new model for flow in shale-gas reservoirs including natural and hydraulic fractures", Comput. Geosci., 21(5-6), 1095-1117. https://doi 10.1007/s10596-017-9665-9.
- Saini-Eidukat, B., Maroza, D., Blake, R. and Adamson, N. (1993), "Implications of rock mineralogy and texture on the feasibility of in situ leach mining of Mn-bearing iron formations of central Minnesota, USA", Appl. Geochem., 8(1), 37-49. https://doi.org/10.1016/0883-2927(93)90055-L.
- Seredkin, M., Zabolotsky, A. and Jeffress, G. (2016), "In situ recovery, an alternative to conventional methods of mining: Exploration, resource estimation, environmental issues, project evaluation and economics", Ore Geol. Rev., 79, 500-514. https://doi.org/10.1016/j.oregeorev.2016.06.016.
- Sharifzadeh, M., Aldrich, C., Ericson, E. and Sarmadivaleh, M., (2018), "A methodology for geomechanical modelling of in situ recovery (ISR) in fractured hard rocks", Proceedings of the ISRM 10th Asian Rock Mechanics Symposium, Singapore, October-November
- Sharifzadeh, M. and Javadi, M. (2017), Groundwater and Underground Excavations: From Theory to Practice, in Rock Mechanics and Engineering, CRC Press, Taylor and Francis Group, London, U.K.
- Sinclair, L. and Thompson, J. (2015), "In situ leaching of copper: Challenges and future prospects", Hydrometallurgy, 157, 306-324. https://doi.org/10.1016/j.hydromet.2015.08.022
- Taylor, G., Farrington, V., Woods, P., Ring, R. and Molloy, R. (2004), "Review of environmental impacts of the acid in-situ leach uranium mining process", CSIRO Land and Water Client Report, CSIRO Clayton, Victoria, Australia.
Cited by
- Numerical simulation and optimization of hydraulic fracturing operation in a sandstone-mudstone interbedded reservoir vol.14, pp.21, 2021, https://doi.org/10.1007/s12517-021-08506-0