Acknowledgement
Supported by : National Natural Science Foundation of China, China Postdoctoral Science Foundation, Shandong University of Science and Technology (SDUST)
References
- Al-Shukur, A.H., Al-Qaisi, A.Z. and Al-Rammahi, A.M. (2018), "Nonlinear analysis of water-soil-barrage floor interaction", MATEC Web Conf., 162.
- Alalaimi, M., Lorente, S., Wechsatol, W. and Bejan, A. (2015), "The robustness of the permeability of constructal tree-shaped fissures", Int. J. Heat Mass Transfer, 90, 259-265. https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.042.
- Bandis, S.C., Lumsden, A.C. and Barton, N.R. (1983), "Fundamentals of rock joint deformation", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 20(6), 249-268. https://doi.org/10.1016/0148-9062(83)90595-8.
- Cai, M.F. He, M.C. and Liu, D.Y. (2002), Rock Mechanics and Engineering, Science Press, Beijing, China.
- Chang, Z.X., Zhao, Y.S., Hu, Y.Q. and Yang, D. (2004), "Theoretic and experimental studies on seepage law of single fracture under 3Dstresses", Chin. J. Rock Mech. Eng., 23(4), 620-624. https://doi.org/10.3321/j.issn:1000-6915.2004.04.017
- Conrad, J. E., Prouty, N. G., Walton, M. A., Kluesner, J. W., Maier, K. L., McGann, M., Brothers, D.S., Roland, E.C. and Dartnell, P. (2018), "Seafloor fluid seeps on Kimki Ridge, offshore southern California: Links to active strike-slip faulting", Deep-Sea Res. Part II Top. Stud. Oceanogr., 150, 82-91. https://doi.org/10.1016/j.dsr2.2017.11.001.
- Develi, K. and Babadagli, T. (2015), "Experimental and visual analysis of single-phase flow through rough fracture replicas", Int. J. Rock Mech. Min. Sci., 73, 139-155. https://doi.org/10.1016/j.ijrmms.2014.11.002.
- Di, S.T., Jia, C., Qiao, W.G., Yu, W.J. and Li, K. (2017), "Theoretical and experimental investigation of characteristics of single fracture stress-seepage coupling considering microroughness", J. Math Probl. Eng., 12, 1-12. https://doi.org/10.1155/2017/6431690.
- Giwelli, A.A., Matsuki, K., Sakaguchi, K. and Kizaki, A. (2014), "Effects of non-uniform traction and specimen height in the direct shear test on stress and deformation in a rock fracture", Int. J. Numer. Anal. Meth. Geomech., 37(14), 2186-2204. https://doi.org/10.1002/nag.2129.
- Goodman, R.E. (1976), Methods of Geological Engineering in Discontinuous Rocks, West Publishing Company, New York, U.S.A.
- Haeri, H., Shahriar, K., Marji, M.F. and Mohammad, P. (2014), "Cracks coalescence mechanism and cracks propagation paths in rock-like specimens containing pre-existing random cracks under compression", J. Central South Univ., 21(6), 2404-2414. https://doi.org/10.1007/s11771-014-2194-y.
- Jaksa, M.B. (2007), "Seepage properties of a single rock fracture subjected to triaxial stresses", J. Prog. Nat. Sci., 17(12), 1482-1485.
- Javadi, M., Sharifzadeh, M. and Shahriar, K. (2010), "A new geometrical model for non-linear fluid flow through rough fractures", J. Hydrol. 389(1-2), 18-30. http://doi.org/10.1016/j.jhydrol.2010.05.010.
- Kong, D.Z., Cheng, Z.B. and Zheng, S.S. (2019), "Study on failure mechanism and stability control measures in largecutting-height coal mining face with deep-buried seam", Bull. Eng. Geol. Environ., 1-15. https://doi.org/10.1007/s10064-019-01523-0.
- Konsoer, K.M., Rhoads, B.L., Langendoen, E.J., Best, J.L. and Garcia, M.H. (2015), "Spatial variability in bank resistance to erosion on a large meandering, mixed bedrock-alluvial river", Geomorphology, 252, 80-97. https://doi.org/10.1016/j.geomorph.2015.08.002.
- Lei, J.S. Li, S., Wu, Z.L., Yao, Q. and Zeng, Y.W. (2016), "Experimental study of shear displacement effect seepage characteristics of random surface cracks", Chin. J. Rock Mech. Eng., 35(2), 3898-3899.
- Li, L.P., Chen, D.Y., Li, S.C., Shi, S.S., Zhang, M.G. and Liu, H.L. (2017), "Numerical analysis and fluid-solid coupling model test of filling-type fracture water inrush and mud gush", Geomech. Eng., 13(6), 1011-1025. https://doi.org/10.12989/gae.2017.13.6.1011.
- Liolios, P.A. and Exadaktylos, G.E. (2006), "A solution of steadystate fluid flow in multiply fractured isotropic porous media", Int. J. Solids Struct., 43(13), 3960-3982. https://doi.org/10.1016/j.ijsolstr.2005.03.021.
- Liu, C.H. and Chen, C.X. (2007), "The seepage characteristics of single fractured rock under triaxial stress", J. Prog. Nat. Sci., 17(7), 989-994.
- Liu, T., Cao, P. and Lin, H. (2013), "Evolution procedure of multiple rock cracks under seepage pressure", Math Probl. Eng., 1-11. https://doi.org/10.1155/2013/738013.
- Louis, C. (1987), Rock Hydraulics, Springer-Verlag, New York, U.S.A.
- Lv, H.Y, Tang, Y.S., Zhang, L.F., Cheng, Z.B. and Zhang, Y.N. (2019), "Analysis for mechanical characteristics and failure models of coal specimens with non-penetrating single crack", Geomech. Eng., 17(4), 355-365. https://doi.org/10.12989/gae.2019.17.4.355.
- Miao, T.J., Yu, B.M., Duan, Y.G. and Fang, Q.T. (2015), "A fractal analysis of permeability for fractured rocks", Int. J. Heat Mass Transfer, 81, 75-80. http://doi.org/10.1016/j.ijheatmasstransfer.2014.10.010.
- Morrow, C.A., Zhang, B.C. and Byerlee, J.D. (1986), "Effective pressure law for permeability of Westerly granite under cyclic loading", J. Geophys. Res., 91(B3), 3870-3876. https://doi.org/10.1029/JB091iB03p03870.
- Nguyen-Thoi, T., Phung-Van, P., Ho-Huu, V. and Le-Anh, L. (2015), "An edge-based smoothed finite element method (ESFEM) for dynamic analysis of 2D Fluid-Solid interaction problems", KSCE J. Civ. Eng., 19(3), 641-650. https://doi.org/10.1007/s12205-015-0293-4.
- Odintsev, V.N. and Miletenko, N.A. (2015) "Water inrush in mines as a consequence of spontaneous hydrofracture", J. Min. Sci., 51(3), 423-434. https://doi.org/10.1134/S1062739115030011.
- Pham, K., Kim, D., Choi, H.J., Lee, I.M. and Choi, H. (2018), "A numerical framework for infinite slope stability analysis under transient unsaturated seepage conditions", Eng. Geol., 243, 36-49. http://doi.org/10.1016/j.enggeo.2018.05.021.
- Samanta, M, Punetha, P. and Sharma, M. (2018), "Effect of roughness on interface shear behavior of sand with steel and concrete surface", Geomech. Eng., 14(4), 387-398. https://doi.org/10.12989/gae.2018.14.4.387.
- Shao, J.L., Zhou, F. and Sun, W.B. (2019), "Evolution model of seepage characteristics in the process of water inrush in faults", Geofluids, 1-14. https://doi.org/10.1155/2019/4926768.
- Snow, D.T. (1968), "Rock fracture spacings, openings, and porosities", J. Soil Mech., 94(SM1), 73-91.
- Sun, W.B. and Xue, Y.C. (2018), "An improved fuzzy comprehensive evaluation system and application for risk assessment of floor water inrush in deep mining", Geotech. Geol. Eng., 37(3), 1135. https://doi.org/10.1007/s10706-018-0673-x.
- Sun, W.B., Du, H.Q., Zhou, F. and Shao, J.L. (2019), "Experimental study of crack propagation of rock-like specimens containing conjugate fractures", Geomech. Eng., 17(4), 323-331. https://doi.org/10.12989/gae.2019.17.4.323.
- Sun,W.B., Xue, Y.C., Li, T.T. and Liu, W.T. (2019), "Multi-field coupling of water inrush channel formation in a deep mine with a buried fault", Mine Water Environ., https://doi.org/10.1007/s10230-019-00616-2.
- Tao Y. and Liu, W.Q. (2012), "An equivalent seepage resistance model with seepage-stress coupling for fractured rock mass", Rock Soil Mech., 33(7), 2041-2042. https://doi.org/10.3969/j.issn.1000-7598.2012.07.019
- Tsang Y.W. and Tsang, C.F. (2004), "Channel model of flow through fractured media", Water Resour. Res., 23(3), 467-479. https://doi.org/10.1029/WR023i003p00467.
- Tse, R. and Cruden, D.M. (1979), "Estimating joint roughness coefficients", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 165(5), 303-307. https://doi.org/10.1016/0148-9062(79)90241-9.
- Wu, Y.X. (2010), "Modelling rough joint network and study on hydro-mechanical Behavior of Fractured Rock Mass", Ph.D. Dissertation, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China.
- Xu, C.W., Nie, W., Liu, Z.Q., Peng, H.T., Yang, S.B. and Liu, Q. (2019), "Multi-factor numerical simulation study on spray dust suppression device in coal mining process", Energy, 182, 544-558. https://doi.org/10.1016/j.energy.2019.05.201.
- Yang, T.H., Jia, P., Shi, W.H., Wang, P.T., Liu, H.L. and Yu, Q.L. (2014), "Seepage-stress coupled analysis on anisotropic characteristics of the fractured rock mass around roadway", Tunn. Undergr. Sp. Technol., 43, 11-19. https://doi.org/10.1016/j.tust.2014.03.005.
- Yasuhara, H., Polak, A., Mitani, Y., Grader, A.S., Halleck, P.M. and Elsworth, D. (2006), "Evolution of fracture permeability through fluid-rock reaction under hydrothermal conditions", Earth Plan. Sci. Lett., 244(1-2), 186-200. https://doi.org/10.1016/j.epsl.2006.01.046.
- Yu, H.D., Chen, F.F., Chen, W.Z., Yang, J.P., Cao, J.J. and Yuan, K.K. (2012) "Research on permeability of fractured rock", Chin. J. Rock Mech. Eng., 31(1), 2788-2795.
- Zhang, Y.Z. and Zhang, J.C. (1997), "Experimental study of the seepage flow-stress coupling in fractured rock masses", Rock Soil Mech., 18(4), 59-62.
Cited by
- Experimental Study of Stress-Seepage Coupling Properties of Sandstone under Different Loading Paths vol.2021, 2019, https://doi.org/10.1155/2021/4955017
- Investigation on the Fracturing Permeability Characteristics of Cracked Specimens and the Formation Mechanism of Inrush Channel from Floor vol.2021, 2021, https://doi.org/10.1155/2021/8858733