Abstract
Pure nickel with a thickness of 1 mm was plated on type 304 stainless steels and low alloy steels (JIS G3131 SPHC) by electrolytic plating method in a circulating plating bath. Plating performance, mechanical properties, and surface characteristics were evaluated in terms of pretreatment process, anode material, pH, current density, and flow rate of the plating solution. Addition of hydrochloric acid during pre-treatment process improved the adhesion performance of plating. To improve plating efficiency, it is desirable to use S-nickel rather than electrolytic nickel. The use of S-nickel was also confirmed to be desirable for maintaining the pH and concentration of the plated solution. The defect of the plating using S-nickel anode produced pit on the surface. However, it is believed that proper control can be obtained by increasing the flow rate. Internal stress and hardness values of electrolytic nickel plating according to current density need to be carried out with further studies.