DOI QR코드

DOI QR Code

Ka-Band Variable-Gain CMOS Low Noise Amplifier for Satellite Communication System

위성 통신 시스템을 위한 Ka-band 이득제어 CMOS 저잡음 증폭기

  • Im, Hyemin (School of Electronic Engineering, Soongsil University) ;
  • Jung, Hayeon (School of Electronic Engineering, Soongsil University) ;
  • Lee, Jaeyong (School of Electronic Engineering, Soongsil University) ;
  • Park, Sungkyu (School of Electronic Engineering, Soongsil University) ;
  • Park, Changkun (School of Electronic Engineering, Soongsil University)
  • Received : 2019.06.22
  • Accepted : 2019.07.21
  • Published : 2019.08.31

Abstract

In this paper, we design a low noise amplifier to support ka-band satellite communication systems using 65-nm RFCMOS process. The proposed low noise amplifier is designed with high-gain mode and low-gain mode, and is designed to control the gain according to the magnitude of the input signal. In order to reduce the power consumption, the supply voltage of the entire circuit is limited to 1 V or less. We proposed the gain control circuit that consists of the inverter structure. The 3D EM simulator is used to reduce the size of the circuit. The size of the designed amplifier including pad is $0.33mm^2$. The fabricated amplifier has a -7 dB gain control range in 3 dB bandwidth and the reflection coefficient is less than -6 dB in high gain mode and less than -15 dB in low gain mode.

본 논문에서는 CMOS 65-nm 공정을 이용하여 위성 통신 시스템에서 Ka-band를 지원하기 위한 저잡음 증폭기를 설계하였다. 제안된 저잡음 증폭기는 고이득 모드와 저이득 모드로 구성되어있으며, 입력신호의 크기에 따라 이득을 제어하도록 설계하였다. 전력소모를 줄이기 위해 회로 전체의 공급전압을 1 V 이하로 제한하였으며, 인버터 구조의 이득제어 회로에 대해 기술하였다. 제작된 회로의 크기를 줄이기 위해 3D EM 시뮬레이터를 사용하였으며, 패드를 포함하며 $0.33mm^2$의 면적을 갖는다. 제작된 증폭기는 3 dB 대역폭에서 -7 dB의 이득제어 범위를 가지며 반사계수는 고이득 모드에서 -6 dB, 저이득 모드에서 -15 dB 미만으로 측정되었다.

Keywords

References

  1. J. Li and Y. Li, "Modeling Ka-band satellite communication system with MPSK," in IEEE International Conference on Computer and Communications, Chengdu: China, pp. 1785-1789, 2016.
  2. S. Lee, J. Park, and S. Hong, "A Ka-Band Phase-Compensated Variable-Gain CMOS Low-Noise Amplifier," IEEE Microwave and Wireless Components Letters, vol. 29, no. 2, pp. 131-133, Feb. 2019. https://doi.org/10.1109/LMWC.2018.2887335
  3. K. Kibaroglu, M. Sayginer, and G. M. Rebeiz, "A low-cost scalable 32-element 28-GHz phased array transceiver for 5G communication links based on a $2{\times}2$ beamformer flip-chip unit cell," IEEE Journal of Solid-State Circuits, vol. 53, no. 5, pp. 1260-1274, May 2018. https://doi.org/10.1109/JSSC.2018.2791481
  4. P.-H. Lo, C.-C. Lin, H.-C. Kuo, and H.-R. Chuang, "A Ka-band CMOS low-phase-variation variable gain amplifier with good matching capacity," in European Radar Conference, pp. 858-861, 2012.
  5. M. El-Nozahi, E. Sanchez-Sinencio, and K. Entesari, "A millimeterwave (23-32 GHz) wideband BiCMOS low-noise amplifier," IEEE Journal of Solid-State Circuits, vol. 45, no. 2, pp. 289-299, Feb. 2010. https://doi.org/10.1109/JSSC.2009.2038126
  6. M. Vigilante and P. Reynaert, "On the design of wideband transformer-based fourth order matching networks for E-band receivers in 28-nm CMOS," IEEE Journal of Solid-State Circuits, vol. 52, no. 8, pp. 2071-2082, Aug. 2017. https://doi.org/10.1109/JSSC.2017.2690864
  7. Y. Kim, P. Jang, J. Lim, W. Ko, S. Heo, J. Lee, and T. B. Cho, "A Ka-band Phase Shifting Low Noise Amplifier with Gain Error Compensation for 5G RF beam forming array using 14nm FinFET CMOS," in IEEE International Symposium on Circuits and Systems, Florence: Italy, 2018.
  8. M. Elkholy, S. Shakib, J. Dunworth, V. Aparin, and K. Entesari, "A wideband variable gain LNA with high OIP3 for 5G using 40-nm bulk CMOS," IEEE Microwave and Wireless Components Letters, vol. 28, no. 1, pp. 64-66, Jan. 2018. https://doi.org/10.1109/LMWC.2017.2779832
  9. S.-H. Noh and J.-Y. Ryu "Design of 24-GHz power amplifier for automotive collision avoidance radars," Journal of the Korea Institute of Information and Communication Engineering, vol. 20, no. 1, pp. 117-122, Jan. 2016. https://doi.org/10.6109/jkiice.2016.20.1.117
  10. Y.-S. Hwang, C.-J. Kim, J.-H. Kim, and H.-J. Yoo "A Controllable variable gain LNA for 2 GHz band," in Asia-Pacific Microwave Conference Proceedings, Suzhou: China, 2005.
  11. S. Pellerano, Y. Palaskas, and K. Soumyanath, "A 64 GHz LNA With 15.5 dB Gain and 6.5 dB NF in 90 nm CMOS," Journal of Solid-State Circuits, vol. 43, no. 7, pp. 1542-1552, Jul. 2008. https://doi.org/10.1109/JSSC.2008.922395

Cited by

  1. Noise analysis of cascode LNA with 65nm CMOS technology vol.24, pp.5, 2019, https://doi.org/10.6109/jkiice.2020.24.5.678