Abstract
In this paper, we proposed two methods to automatically generate color images similar to existing images using genetic algorithms. Experiments were performed on two different sizes($256{\times}256$, $512{\times}512$) of gray and color images using each of the proposed methods. Experimental results show that there are significant differences in the evolutionary performance of each technique in genetic modeling for image generation. In the results, evolving the whole image into sub-images evolves much more effective than modeling and evolving it into a single gene, and the generated images are much more sophisticated. Therefore, we could find that gene modeling, selection method, crossover method and mutation rate, should be carefully decided in order to generate an image similar to the existing image in the future, or to learn quickly and naturally to generate an image synthesized from different images.
본 논문에서는 유전자 알고리즘을 이용하여 기존 영상과 유사한 영상을 자동으로 생성하는 두 가지 방법을 제안하였다. 실험은 각각의 제안된 방법을 사용하여 두 가지 크기 ($256{\times}256$, $512{\times}512$)의 흑백 영상과 컬러 영상에서 수행되었다. 실험 결과, 전체 영상을 분할된 서브 영상으로 구분하여 모델링한 후 진화하는 기법이 전체 영상을 단일 유전자로 모델링하여 진화한다는 것보다 훨씬 정교하고 진화 속도도 빠르다는 것을 확인할 수 있었다. 따라서 향후 기존 영상과 유사한 영상을 생성하거나 다른 영상으로부터 합성된 영상을 신속하고 자연스럽게 학습하기 위해서는 영상을 분할하여 유전자를 모델링 하는 기법을 이용하여 유전자 모델링, 선택, 교차, 돌연변이 기법 등을 신중하게 결정해야 할 필요가 있다.