References
- Teitelbaum SL and Ross FP (2003) Genetic regulation of osteoclast development and function. Nat Rev Genet 4, 638-649 https://doi.org/10.1038/nrg1122
- Walsh MC, Kim N, Kadono Y et al (2006) Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol 24, 33-63 https://doi.org/10.1146/annurev.immunol.24.021605.090646
- Nakashima T, Hayashi M, Fukunaga T et al (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17, 1231-1234 https://doi.org/10.1038/nm.2452
- Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC and O'Brien CA (2011) Matrix-embedded cells control osteoclast formation. Nat Med 17, 1235-1241 https://doi.org/10.1038/nm.2448
- Moutsopoulos NM, Konkel J, Sarmadi M et al (2014) Defective neutrophil recruitment in leukocyte adhesion deficiency type I disease causes local IL-17-driven inflammatory bone loss. Sci Transl Med 6, 229ra240
- Souza PP and Lerner UH (2013) The role of cytokines in inflammatory bone loss. Immunol Invest 42, 555-622 https://doi.org/10.3109/08820139.2013.822766
- Miyazaki T, Tokimura F and Tanaka S (2014) A review of denosumab for the treatment of osteoporosis. Patient Prefer Adherence 8, 463-471 https://doi.org/10.2147/PPA.S46192
- Kim H, Walsh MC, Takegahara N et al (2017) The purinergic receptor P2X5 regulates inflammasome activity and hyper-multinucleation of murine osteoclasts. Sci Rep 7, 196 https://doi.org/10.1038/s41598-017-00139-2
- Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289, 1504-1508 https://doi.org/10.1126/science.289.5484.1504
- Yagi M, Miyamoto T, Sawatani Y et al (2005) DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med 202, 345-351 https://doi.org/10.1084/jem.20050645
- Binder NB, Niederreiter B, Hoffmann O et al (2009) Estrogen-dependent and C-C chemokine receptor-2-dependent pathways determine osteoclast behavior in osteoporosis. Nat Med 15, 417-424 https://doi.org/10.1038/nm.1945
- Lacy SE, Bonnemann CG, Buzney EA and Kunkel LM (1999) Identification of FLRT1, FLRT2, and FLRT3: a novel family of transmembrane leucine-rich repeat proteins. Genomics 62, 417-426 https://doi.org/10.1006/geno.1999.6033
- Karaulanov EE, Bottcher RT and Niehrs C (2006) A role for fibronectin-leucine-rich transmembrane cell-surface proteins in homotypic cell adhesion. EMBO Rep 7, 283-290 https://doi.org/10.1038/sj.embor.7400614
- Egea J, Erlacher C, Montanez E et al (2008) Genetic ablation of FLRT3 reveals a novel morphogenetic function for the anterior visceral endoderm in suppressing mesoderm differentiation. Genes Dev 22, 3349-3362 https://doi.org/10.1101/gad.486708
- Leyva-Diaz E, del Toro D, Menal MJ et al (2014) FLRT3 is a Robo1-interacting protein that determines Netrin-1 attraction in developing axons. Curr Biol 24, 494-508 https://doi.org/10.1016/j.cub.2014.01.042
- Maretto S, Muller PS, Aricescu AR, Cho KW, Bikoff EK and Robertson EJ (2008) Ventral closure, headfold fusion and definitive endoderm migration defects in mouse embryos lacking the fibronectin leucine-rich transmembrane protein FLRT3. Dev Biol 318, 184-193 https://doi.org/10.1016/j.ydbio.2008.03.021
- Muller PS, Schulz R, Maretto S et al (2011) The fibronectin leucine-rich repeat transmembrane protein Flrt2 is required in the epicardium to promote heart morphogenesis. Development 138, 1297-1308 https://doi.org/10.1242/dev.059386
- O'Sullivan ML, de Wit J, Savas JN et al (2012) FLRT proteins are endogenous latrophilin ligands and regulate excitatory synapse development. Neuron 73, 903-910 https://doi.org/10.1016/j.neuron.2012.01.018
- Yamagishi S, Hampel F, Hata K et al (2011) FLRT2 and FLRT3 act as repulsive guidance cues for Unc5-positive neurons. EMBO J 30, 2920-2933 https://doi.org/10.1038/emboj.2011.189
- Tai-Nagara I, Yoshikawa Y, Numata N et al (2017) Placental labyrinth formation in mice requires endothelial FLRT2/UNC5B signaling. Development 144, 2392-2401 https://doi.org/10.1242/dev.149757
- Seiradake E, del Toro D, Nagel D et al (2014) FLRT structure: balancing repulsion and cell adhesion in cortical and vascular development. Neuron 84, 370-385 https://doi.org/10.1016/j.neuron.2014.10.008
- Jackson VA, del Toro D, Carrasquero M et al (2015) Structural basis of latrophilin-FLRT interaction. Structure 23, 774-781 https://doi.org/10.1016/j.str.2015.01.013
- Maruyama K, Kawasaki T, Hamaguchi M et al (2016) Bone-protective functions of netrin 1 Protein. J Biol Chem 291, 23854-23868 https://doi.org/10.1074/jbc.M116.738518
- Seiradake E, Jones EY and Klein R (2016) Structural Perspectives on Axon Guidance. Annu Rev Cell Dev Biol 32, 577-608 https://doi.org/10.1146/annurev-cellbio-111315-125008
- Zhu S, Zhu J, Zhen G et al (2019) Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J Clin Invest 129, 1076-1093 https://doi.org/10.1172/JCI121561
- Takegahara N, Kim H, Mizuno H et al (2016) Involvement of receptor activator of nuclear factor-kappaB ligand (RANKL)-induced incomplete cytokinesis in the polyploidization of osteoclasts. J Biol Chem 291, 3439-3454 https://doi.org/10.1074/jbc.M115.677427
- Paiva KBS and Granjeiro JM (2017) matrix metalloproteinases in bone resorption, remodeling, and repair. Prog Mol Biol Transl Sci 148, 203-303 https://doi.org/10.1016/bs.pmbts.2017.05.001