참고문헌
- 'Science and technology policy', http://www.stepi.re.kr/app/publish/view.jsp?cmsCd=CM0021&cateCd=A0504&ntNo=211&sort=PUBDATE&sdt=&edt=&src=&srcTemp=&opt=N&currtPg=1, accessed 07.01, 2019(in Korean)
- M.J. Jang, S.T. Kim, "Neural Network-based FMCW Radar System for Detecting a Drone," IEMEK J. Embed. Sys. Appl., Vol. 13, No. 6, pp. 289-296, 2018(in Korean). https://doi.org/10.14372/IEMEK.2018.13.6.289
- J.H. Kim, D.S. Lee, M.H. Lee, "Lane Datation, System Using CNN," IEMEK J. Embed. Sys. Appl., Vol. 11, No. 3, pp. 163-171, 2016(in Korean). https://doi.org/10.14372/IEMEK.2016.11.3.163
- K.P. Murphy, Machine Learning a probabilistic perspective, MIT Press, 2012.
- 'Artificial intelligence', http://en.wikipedia.org/wiki/Artificial_intelligence, accessed 07.01, 2019.
- 'Machine learning', https://en.wikipedia.org/wiki/Machine_learning, accessed 07.01, 2019.
- M.S. Heo, My first Machine Learning/Deep Learning, Wikibooks, 2019.
- 'A Study on Big Data Analysis and Prediction Model based on Machine Learning', http://repository.kihasa.re.kr:8080/handle/201002/29093, accessed 07.01, 2019(in Korean).
- 'Google's acquisition of kaggle, the impact on the AI field?', http://www.ciokorea.com/news/33510, accessed 07.01, 2019(in Korean).
- 'Data analysis starting with Kaggle and Titanic research', https://developers.ascentnet.co.jp/2017/11/24/kaggle-process-review/, accessed 07.01, 2019.
- 'Titanic: Machine Learning from Disaster', https://www. kaggle.com/c/titanic, accessed 07.01, 2019.
- B. Henrik, R. Joseph, F. Mark, Real-World Machine Learning, Wikibooks, 2017.
- D.M. Beazly, Python Essential Reference, Insight, 2012.
- 'scikit learn', https://scikit-learn.org/stable/, accessed 07.01, 2019.
- P. Gramatica, P. Pilutti, E. Papa, "Validated QSAR Prediction of OH Tropospheric Degradation of VOCs: Splitting into Training-Test Sets and Consensus Modeling," Journal of Chemical Information and Modeling, Vol. 44, No. 5, pp. 1794-182, 2004.
- 'Artificial neural network', https://en.wikipedia.org/wiki/Artificial_neural_network, accessed 07.01, 2019.
- 'Neural network', https://en.wikipedia.org/wiki/Neural_network, accessed 07.01, 2019.
- 'Perceptron', https://en.wikipedia.org/wiki/Perceptron, accessed 07.01, 2019.
- 'Multilayer perceptron', https://en.wikipedia.org/wiki/Multilayer_perceptron, accessed 07.01, 2019.
- 'k-nearest neighbors algorithm', https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm, accessed 07.01, 2019.
- 'Naive Bayes classifier', http://en.wikipedia.org/wiki/Naive_Bayes_classifier, accessed 07.01, 2049.
- 'Decision tree', https://en.wikipedia.org/wiki/Decision_tree, accessed 07.01, 2019.
- 'Random forest', https://en.wikipedia.org/wiki/Random_forest, accessed 07.01, 2019.
- 'Gradient boostin', https://en.wikipedia.org/wiki/Gradient_boosting, accessed 07.01, 2019.
- 'XGBoost', https://en.wikipedia.org/wiki/XGBoost, accessed 07.01, 2019.
- 'Ensemble learning', https://en.wikipedia.org/wiki/Ensemble_learning, accessed 07.01, 2019.
- 'Bootstrap aggregating', https://en.wikipedia.org/wiki/Bootstrap_aggregating, accessed 07.01, 2019.
- 'Support-vector machine', https://en.wikipedia.org/wiki/Support-vector_machine, accessed 07.01, 2019.
- 'Logistic regression', https://en.wikipedia.org/wiki/Logistic_regression, accessed 07.01, 2019.
- D.M.W. Powers, "Evaluation: From Informedness, Markedness and Correlation," Journal of Machine Learning Technology, Vol. 2, No. 1, pp. 37-63, 2011.
- T. Fawcett, "An Introduction to ROC Analysis," Pattern Recognition Letters, Vol. 27, No. 8, pp. 861-874, 2006. https://doi.org/10.1016/j.patrec.2005.10.010
- 'Receiver operating characteristic', https://en.wikipedia.org/wiki/Receiver_operating_characteristic, accessed 07.01, 2019.
- 'Confusion matrix', https://en.wikipedia.org/wiki/Confusion_matrix', accessed 07.01, 2019.
- 'Titanic Data Science Solution', https://www.kaggle.com/startupsci/titanic-data-science-solutions, accessed 07.01, 2019.
- 'An Interactive Data Science Tutorial', https://www.kaggle.com/helgejo/an-interactive-data-science-tutorial, accessed 07.01, 2019.
- 'Machine Learning form Start to Finish with Scikit-Learn', https://www.kaggle.com/jeffd23/scikit-learn-ml-from-start-to-finish, accessed 07.01, 2019.
- 'XGBoost example', https://www.kaggle.com/datacanary/xgboost-example-python, accessed 07.01, 2019.
- 'Introduction to Ensembling/Stacking in Python', http://www/kaggle.com/arthurtok/introduction-to-ensembling-stacking-in-python, accessed 07.01, 2019.
- 'Hyperparameter optimization', https://en.wikipedia.org/wiki/Hyperparameter_optimization, accessed 07.01, 2019.
- 'Developing of New a Machine-Learning Tutorial Model', https://github.com/dgkim1108/Machine-Learning, accessed 07.01, 2019.