DOI QR코드

DOI QR Code

Dynamic response of a linear two d.o.f system visco-elastically coupled with a rigid block

  • Received : 2019.02.27
  • Accepted : 2019.08.07
  • Published : 2019.08.25

Abstract

The present work investigates the use of a rigid rocking block as a tool to reduce vibrations in a frame structure. The study is based on a simplified model composed by a 2-DOF linear system, meant to represent a general M-DOF frame structure, coupled with a rocking rigid block through a linear visco-elastic device, which connects only the lower part of the 2-DOF system. The possibility to restrain the block directly to the ground, by means of a second visco-elastic device, is investigated as well. The dynamic response of the model under an harmonic base excitation is then analysed in order to evaluate the effectiveness of the coupling in reducing the displacements and the drift of the 2-DOF system. The nonlinear equations of motion of the coupled assemblage 2-DOF-block are obtained by a Lagrangian approach and then numerically integrated considering some reference mechanical and geometrical quantities as variable parameters. It follows an extensive parametric analysis, whose results are summarized through behaviour maps, which portray the ratio between the maximum displacements and drifts of the system, with and without the coupling with the rigid block, for several combinations of system's parameters. When the ratio of the displacements is less than unity, the coupling is considered effective. Results show that the presence of the rocking rigid block improves the dynamics of the system in large ranges of the characterizing parameters.

Keywords

References

  1. Aghagholizadeh, M. and Makris, N. (2018), "Earthquake response analysis of yielding structures coupled with vertically restrained rocking walls", Earthq. Eng. Struct. Dyn., 47(15), 2965-2984. https://doi.org/10.1002/eqe.3116.
  2. Andreaus, U. (1990), "Sliding-uplifting response of rigid blocks to base excitation", Earthq. Eng. Struct. Dyn., 19(8), 1181-1196. https://doi.org/10.1002/eqe.4290190808.
  3. Brzeski, P., Kapitaniak, T. and Perlikowski, P. (2016), "The use of tuned mass absorber to prevent overturning of the rigid block during earthquake", Int. J. Struct. Stabil. Dyn., 6(10), 1550075. https://doi.org/10.1142/S0219455415500753.
  4. Calio, I. and Marletta, M. (2003), "Passive control of the seismic response of art objects", Eng. Struct., 25, 1009-1018. https://doi.org/10.1016/S0141-0296(03)00045-2.
  5. Ceravolo, R., Pecorelli, M. and Zanotti Fragonara, L. (2016), "Semi-active control of the rocking motion of monolithic art objects", J. Sound Vib., 374, 1-16. https://doi.org/10.1016/j.jsv.2016.03.038.
  6. Ceravolo, R., Pecorelli, M. and Zanotti Fragonara, L. (2017), "Comparison of semi-active control strategies for rocking objects under pulse and harmonic excitations", Mech. Syst. Signal Proc., 90, 175-188. https://doi.org/10.1016/j.ymssp.2016.12.006.
  7. Collini, L., Garziera, R., Riabova, K., Munitsyna, M. and Tasora, A. (2016), "Oscillations control of rocking-block-type buildings by the addition of a tuned pendulum", Shock Vib., 2016, 8570538. http://dx.doi.org/10.1155/2016/8570538.
  8. Contento, A. and Di Egidio, A. (2009), "Investigations into benefits of base isolation for non-symmetric rigid blocks", Earthq. Eng. Struct. Dyn., 38(7), 849-866. https://doi.org/10.1002/eqe.870.
  9. Contento, A. and Di Egidio, A. (2014), "On the use of base isolation for the protection of rigid bodies placed on a multi-storey frame under seismic excitation", Eng. Struct., 62-63, 1-10. https://doi.org/10.1016/j.engstruct.2014.01.019.
  10. Corbi, O. (2006), "Laboratory investigation on sloshing water dampers coupled to rigid blocks with unilateral constraints", Int. J. Mech. Solid., 1(1), 29-40.
  11. de Leo, A., Simoneschi, G., Fabrizio, C. and Di Egidio, A. (2016), "On the use of a pendulum as mass damper to control the rocking motion of a non-symmetric rigid block", Meccanica, 51(11), 2727-2740. https://doi.org/10.1007/s11012-016-0448-5.
  12. DeJong, M. and Dimitrakopoulos, E. (2014), "Dynamically equivalent rocking structures", Earthq. Eng. Struct. Dyn., 43(10), 1543-1563. https://doi.org/10.1002/eqe.2410.
  13. Di Egidio, A., Alaggio, R., Contento, A., Tursini, M. and Della Loggia, E. (2015), "Experimental characterization of the overturning of three-dimensional square based rigid block", Int. J. Non-Lin. Mech., 69, 137-145. https://doi.org/10.1016/j.ijnonlinmec.2014.12.003.
  14. Di Egidio, A. and Contento, A. (2009), "Base isolation of sliding-rocking non-symmetyric rigid blocks subjected to impulsive and seismic excitations", Eng. Struct., 31, 2723-2734. https://doi.org/10.1016/j.engstruct.2009.06.021
  15. Di Egidio, A. and Contento, A. (2010), "Seismic response of a non-symmetric rigid block on a constrained oscillating base", Eng. Struct, 32, 3028-3039. https://doi.org/10.1016/j.engstruct.2010.05.022.
  16. Di Egidio, A., de Leo, A. and Simoneschi, G. (2018), "Effectiveness of mass-damper dynamic absorber on rocking block under one-sine pulse ground motion", Int. Limit. Non-Lin. Mech., 98, 154-162. https://doi.org/10.1016/j.ijnonlinmec.2017.10.015.
  17. Di Egidio, A., Simoneschi, G., Olivieri, C. and de Leo, A. (2014a), "Protection of slender rigid blocks from the overturning by using an active control system", in "Proceedings of the 23rd Conference The Italian Association of Theoretical and Applied Mechanics".
  18. Di Egidio, A., Zulli, D. and Contento, A. (2014b), "Comparison between the seismic response of 2D and 3D models of rigid blocks", Earthq. Eng. Eng. Vib., 13(1), 151-162. https://doi.org/10.1007/s11803-014-0219-z.
  19. Dimitrakopoulos, E. and DeJong, M. (2012), "Overturning of retrofitted rocking structures under pulse-type excitations", J. Eng. Mech., 138(8), 963-972. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000410.
  20. Fabrizio, C., de Leo, A. and Di Egidio, A. (2017a), "Structural disconnection as a general technique to improve the dynamic and seismic response of structures: A basic model", Proc. Eng., 199, 1635-1640. https://doi.org/10.1016/j.proeng.2017.09.086.
  21. Fabrizio, C., de Leo, A. and Di Egidio, A. (2019), "Tuned mass damper and base isolation: a unitary approach for the seismic protection of conventional frame structures", J. Eng. Mech., 145(4), 04019011. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001581.
  22. Fabrizio, C., Di Egidio, A. and de Leo, A. (2017b), "Top disconnection versus base disconnection in structures subjected to harmonic base excitation", Eng. Struct., 152, 660-670. https://doi.org/10.1016/j.engstruct.2017.09.041.
  23. Housner, G. (1963), "The behavior of inverted pendulum structures during earthquakes", Bull. Seismol. Soc. America, 53(2), 404-417.
  24. Huang, W., McClurea, G. and Hussainzadab, N. (2013), "Seismic interactions between suspended ceilings and nonstructural partition walls", Coupled Syst. Mech., 2(4), 329-348. https://doi.org/10.12989/csm.2013.2.4.329.
  25. Khatiwada, S., Nawawi and Chouw, N. (2013), "A shake table investigation on interaction between buildings in a row", Coupled Syst. Mech., 2(2), 175-190. https://doi.org/10.12989/csm.2013.2.2.175.
  26. Kounadis, A.N. (2013), "Parametric study in rocking instability of a rigid block under harmonic ground pulse: a unified approach", Soil Dyn. Earthq. Eng., 45, 125-143. https://doi.org/10.1016/j.soildyn.2012.10.002.
  27. Makris, N. and Aghagholizadeh, M. (2017), "The dynamics of an elastic structure coupled with a rocking wall", Earthq. Eng. Struct. Dyn., 46(6), 945-954. https://doi.org/10.1002/eqe.2838.
  28. Makris, N. and Zhang, J. (2001), "Rocking response of anchored blocks under pulse-type motions", J. Eng. Mech., 127(5), 484-493. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:5(484).
  29. Muratovic, A. and Ademovic, N. (2015), "Influence of masonry infill on reinforced concrete frame structures' seismic response", Coupled Syst. Mech., 4(2), 173-189. http://dx.doi.org/10.12989/csm.2015.4.2.173.
  30. Ormeno, M., Tam Larkin, T. and Chouw, N. (2012), "Influence of uplift on liquid storage tanks during earthquakes", Coupled Syst. Mech., 1(4), 311-324. http://dx.doi.org/10.12989/csm.2012.1.4.311.
  31. Palmeri, A. and Makris, N. (2008), "Response analysis of rigid structures rocking on viscoelastic foundation", Earthq. Eng. Struct. Dyn., 37(7), 1039-1065. https://doi.org/10.1002/eqe.800.
  32. Pompei, A., Scalia, A. and Sumbatyan, M. (1998), "Dynamics of rigid block due to horizontal ground motion", J. Eng. Mech., 124(7), 713-717. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:7(713).
  33. Psycharis, I., M., F. and Stefanou, I. (2013), "Seismic reliability assessment of classical columns subjected to near-fault ground motions", Earthq. Eng. Struct. Dyn., 42(14), 2061-2079. https://doi.org/10.1002/eqe.2312.
  34. Shenton, H. (1996), "Criteria for initiation of slide, rock, and slide-rock rigid-body modes", J. Eng. Mech., 122(7), 690-693. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:7(690).
  35. Shenton, H. and Jones, N. (1991), "Base excitation of rigid bodies. I: Formulation", J. Eng. Mech., 117(10), 2286-2306. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:10(2286)
  36. Simoneschi, G., de Leo, A. and Di Egidio, A. (2017a), "Effectiveness of oscillating mass damper system in the protection of rigid blocks under impulsive excitation", Eng. Struct., 137, 285-295. https://doi.org/10.1016/j.engstruct.2017.01.069.
  37. Simoneschi, G., Geniola, A., de Leo, A. and Di Egidio, A. (2017b), "On the seismic performances of rigid blocks coupled with an oscillating mass working as TMD", Earthq. Eng. Struct. Dyn., 46(9), 1453-1469. https://doi.org/10.1002/eqe.2864.
  38. Simoneschi, G., Olivieri, C., de Leo, A. and Di Egidio, A. (2018), "Pole placement method to control the rocking motion of rigid blocks", Eng. Struct., 167, 39-47. https://doi.org/10.1016/j.engstruct.2018.04.016.
  39. Spanos, P., Di Matteo, A., Pirrotta, A. and Di Paola, M. (2017), "Rocking of rigid block on nonlinear flexible foundation", Int. J. Non-Lin. Mech., 94, 362-374. https://doi.org/10.1016/j.ijnonlinmec.2017.06.005.
  40. Spanos, P. and Koh, A. (1984), "Rocking of rigid blocks due to harmonic shaking", J. Eng. Mech., 110(11), 1627-1642. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:11(1627).
  41. Spanos, P. and Koh, A. (1986), "Analysis of block random rocking", Soil Dyn. Earthq. Eng., 5(3), 178-183. https://doi.org/10.1016/0267-7261(86)90021-7.
  42. Taniguchi, T. (2002), "Non-linear response analyses of rectangular rigid bodies subjected to horizontal and vertical ground motion", Earthq. Eng. Struct. Dyn., 31(8), 1481-1500. https://doi.org/10.1002/eqe.170.
  43. Tung, C. (2007), "Initiation of motion of a free-standing body to base excitation", Earthq. Eng. Struct. Dyn., 36(10), 1431-1439. https://doi.org/10.1002/eqe.703.
  44. Vassiliou, M., K.R., M. and Stojadinovic, B. (2014), "Dynamic response analysis of solitary flexible rocking bodies: modeling and behavior under pulse-like ground excitation", Earthq. Eng. Struct. Dyn., 43(10), 1463-1481. https://doi.org/10.1002/eqe.2406.
  45. Vassiliou, M. and Makris, N. (2012), "Analysis of the rocking response of rigid blocks standing free on a seismically isolated base", Earthq. Eng. Struct. Dyn., 41(2), 177-196. https://doi.org/10.1002/eqe.1124.
  46. VoyagakiIoannis, E., Psycharis, I. and Mylonakis, G. (2013), "Rocking response and overturning criteria for free standing rigid blocks to single-lobe pulses", Soil Dyn. Earthq. Eng., 46, 85-95. https://doi.org/10.1016/j.soildyn.2012.11.010.
  47. Yim, C., Chopra, A. and Penzien, J. (1980), "Rocking response of rigid blocks to earthquakes", Earthq. Eng. Struct. Dyn., 8(6), 565-587. https://doi.org/10.1002/eqe.4290080606.
  48. Zhang, J. and Makris, N. (2001), "Rocking response of free-standing blocks under cycloidal pulses", J. Eng. Mech., 127(5), 473-483. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:5(473).
  49. Zulli, D., Contento, A. and Di Egidio, A. (2012), "Three-dimensional model of rigid block with a rectangular base subject to pulse-type excitation", Int. J. Non-Lin. Mech., 47(6), 679-687. https://doi.org/10.1016/j.ijnonlinmec.2011.11.004.

Cited by

  1. Rigid block coupled with a 2 d.o.f. system: Numerical and experimental investigation vol.9, pp.6, 2019, https://doi.org/10.12989/csm.2020.9.6.539