DOI QR코드

DOI QR Code

Mesoscopic analysis of reinforced concrete beams

  • Tintu Shine, A.L. (Department of Civil Engineering, Viswajyothi College of Engineering and Technology) ;
  • Fincy, Babu (Kerala Rural Water Supply and Sanitation Agency) ;
  • Dhileep, M. (Department of Civil Engineering, Muthoot Institute of Technology & Science)
  • 투고 : 2019.01.13
  • 심사 : 2019.05.17
  • 발행 : 2019.08.25

초록

Reinforced concrete can be considered as a heterogeneous material consisting of coarse aggregate, mortar mix and reinforcing bars. This paper presents a two-dimensional mesoscopic analysis of reinforced concrete beams using a simple two-phase mesoscopic model for concrete. The two phases of concrete, coarse aggregate and mortar mix are bonded together with reinforcement bars so that inter force transfer will occur through the material surfaces. Monte Carlo's method is used to generate the random aggregate structure using the constitutive model at mesoscale. The generated models have meshed such that there is no material discontinuity within the elements. The proposed model simulates the load-deflection behavior, crack pattern and ultimate load of reinforced concrete beams reasonably well.

키워드

참고문헌

  1. Asai, M., Terada, K., Ikeda, K., Suyama, H. and Fuji, K. (2003), "Mesoscopic numerical analysis of concrete structures by a modified lattice model", Struct. Eng. Earthq. Eng., 20(1), 43-54. https://doi.org/10.2208/jsceseee.20.43s.
  2. Bazant, Z.P., Tabbara, M.R., Kazemi, M.T. and Cabot, G.P. (1990), "Random particle model for fracture of aggregate or fiber composites", J. Eng. Mech., 116(8), 1686-1705. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1686).
  3. Borges D.C. and Pituba J.J.C. (2017), "Analysis of quasi-brittle materials at mesoscopic level using homogenization model", Adv. Concrete Construct., 5(3), 221-240. https://doi.org/10.12989/acc.2017.5.3.221.
  4. Kim, S.M. and Al-Rub, R.K.A. (2011), "Meso-scale computational modeling of the plastic-damage response of cementitious composites", Cement Concrete Res., 41(3), 339-358. https://doi.org/10.1016/j.cemconres.2010.12.002.
  5. Kozicki, J. and Tejchman, J. (2007), "Effect of aggregate structure on fracture process in concrete using 2D lattice model", Arch. Mech., 59(4-5), 365-384.
  6. Kwan, A.K.H., Ng, P.L. and Wang, Z.M. (2017), "Mesoscopic analysis of crack propagation in concrete by nonlinear finite element method with crack queuing algorithm", Proc. Eng., 172, 620-627. https://doi.org/10.1016/j.proeng.2017.02.072.
  7. Nagarajan, P., Jayadeep, U.B. and MadhavanPillai, T.M. (2010), "Mesoscopic numerical analysis of reinforced concrete beams using a modified micro-truss model", Interact. Multiscale Mech., 3(1), 23-37. https://doi.org/10.12989/imm.2010.3.1.023
  8. Prasad, B.K.R. and Sagar, R.V. (2006), "Numerical modeling of fracture and size effect in plain concrete", Inst. Eng. India J., 86(2), 182-186.
  9. Rodrigues, E.A., Manzoli, O.L., Bitencourt Jr, L.A.G. and Bittencourt, T.N. (2016), "2D mesoscale model for concrete based on the use of interface element with a high aspect ratio", Int. J. Solid Struct., 94-95, 112-124. https://doi.org/10.1016/j.ijsolstr.2016.05.004.
  10. Roelfstra, P.E. (1989), "A numerical approach to investigate the properties of concrete-numerical concrete", Ph.D. Thesis, EPFL, Lausanne, Switzerland.
  11. Sagar, R.V., Prasad, B.K.R and Karihaloo, B.L. (2010), "Verification of the applicability of lattice model to concrete fracture by AE study", Int. J. Fract., 161(2), 121-129. https://doi.org/10.1007/s10704-009-9431-7.
  12. Schlangen, E. and Garboczi, E.J. (1997), "Fracture simulations of concrete using lattice model, computational aspects", Eng. Fract. Mech., 57(2/3), 319-332. https://doi.org/10.1016/S0013-7944(97)00010-6.
  13. Schlangen, E. and van Mier, J.G.M. (1992), "Simple lattice model for numerical simulation of fracture of concrete materials and structures", Mater. Struct., 25(9), 534-542. https://doi.org/10.1007/BF02472449.
  14. Sreedevi, V.M. (2010), "Development of the mesoscopic structure of concrete for fracture simulation", M. Tech Thesis, National Institute of Technology, Calicut, India.
  15. Wang, X., Yang, Z. and Jivkov, A.P. (2015), "Monte Carlo simulations of mesoscale fracture of concrete with random aggregates and pores: a size effect study", Constr. Build. Mater., 80, 262-272. https://doi.org/10.1016/j.conbuildmat.2015.02.002.
  16. Wang, Z.M., Kwan, A.K.H. and Chan, H.C. (1999), "Mesoscopic study of concrete I: Generation of random aggregate structure and finite element mesh", Comput. Struct., 70(5), 533-544. https://doi.org/10.1016/S0045-7949(98)00177-1.
  17. Wriggers, P. and Moftah, S.O. (2006), "Mesoscale models for concrete: Homogenisation and damage behavior", Finite Elements Anal. Des., 42, 623-636. https://doi.org/10.1016/j.finel.2005.11.008.
  18. Ying, Z.Q., Du, C.B. and Sun, L.G. (2007), "Mesoscopic numerical simulation method for fracture of concrete", Key Eng. Mater., 344-345, 213-216. https://doi.org/10.4028/www.scientific.net/KEM.348-349.213