References
- Asai, M., Terada, K., Ikeda, K., Suyama, H. and Fuji, K. (2003), "Mesoscopic numerical analysis of concrete structures by a modified lattice model", Struct. Eng. Earthq. Eng., 20(1), 43-54. https://doi.org/10.2208/jsceseee.20.43s.
- Bazant, Z.P., Tabbara, M.R., Kazemi, M.T. and Cabot, G.P. (1990), "Random particle model for fracture of aggregate or fiber composites", J. Eng. Mech., 116(8), 1686-1705. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1686).
- Borges D.C. and Pituba J.J.C. (2017), "Analysis of quasi-brittle materials at mesoscopic level using homogenization model", Adv. Concrete Construct., 5(3), 221-240. https://doi.org/10.12989/acc.2017.5.3.221.
- Kim, S.M. and Al-Rub, R.K.A. (2011), "Meso-scale computational modeling of the plastic-damage response of cementitious composites", Cement Concrete Res., 41(3), 339-358. https://doi.org/10.1016/j.cemconres.2010.12.002.
- Kozicki, J. and Tejchman, J. (2007), "Effect of aggregate structure on fracture process in concrete using 2D lattice model", Arch. Mech., 59(4-5), 365-384.
- Kwan, A.K.H., Ng, P.L. and Wang, Z.M. (2017), "Mesoscopic analysis of crack propagation in concrete by nonlinear finite element method with crack queuing algorithm", Proc. Eng., 172, 620-627. https://doi.org/10.1016/j.proeng.2017.02.072.
- Nagarajan, P., Jayadeep, U.B. and MadhavanPillai, T.M. (2010), "Mesoscopic numerical analysis of reinforced concrete beams using a modified micro-truss model", Interact. Multiscale Mech., 3(1), 23-37. https://doi.org/10.12989/imm.2010.3.1.023
- Prasad, B.K.R. and Sagar, R.V. (2006), "Numerical modeling of fracture and size effect in plain concrete", Inst. Eng. India J., 86(2), 182-186.
- Rodrigues, E.A., Manzoli, O.L., Bitencourt Jr, L.A.G. and Bittencourt, T.N. (2016), "2D mesoscale model for concrete based on the use of interface element with a high aspect ratio", Int. J. Solid Struct., 94-95, 112-124. https://doi.org/10.1016/j.ijsolstr.2016.05.004.
- Roelfstra, P.E. (1989), "A numerical approach to investigate the properties of concrete-numerical concrete", Ph.D. Thesis, EPFL, Lausanne, Switzerland.
- Sagar, R.V., Prasad, B.K.R and Karihaloo, B.L. (2010), "Verification of the applicability of lattice model to concrete fracture by AE study", Int. J. Fract., 161(2), 121-129. https://doi.org/10.1007/s10704-009-9431-7.
- Schlangen, E. and Garboczi, E.J. (1997), "Fracture simulations of concrete using lattice model, computational aspects", Eng. Fract. Mech., 57(2/3), 319-332. https://doi.org/10.1016/S0013-7944(97)00010-6.
- Schlangen, E. and van Mier, J.G.M. (1992), "Simple lattice model for numerical simulation of fracture of concrete materials and structures", Mater. Struct., 25(9), 534-542. https://doi.org/10.1007/BF02472449.
- Sreedevi, V.M. (2010), "Development of the mesoscopic structure of concrete for fracture simulation", M. Tech Thesis, National Institute of Technology, Calicut, India.
- Wang, X., Yang, Z. and Jivkov, A.P. (2015), "Monte Carlo simulations of mesoscale fracture of concrete with random aggregates and pores: a size effect study", Constr. Build. Mater., 80, 262-272. https://doi.org/10.1016/j.conbuildmat.2015.02.002.
- Wang, Z.M., Kwan, A.K.H. and Chan, H.C. (1999), "Mesoscopic study of concrete I: Generation of random aggregate structure and finite element mesh", Comput. Struct., 70(5), 533-544. https://doi.org/10.1016/S0045-7949(98)00177-1.
- Wriggers, P. and Moftah, S.O. (2006), "Mesoscale models for concrete: Homogenisation and damage behavior", Finite Elements Anal. Des., 42, 623-636. https://doi.org/10.1016/j.finel.2005.11.008.
- Ying, Z.Q., Du, C.B. and Sun, L.G. (2007), "Mesoscopic numerical simulation method for fracture of concrete", Key Eng. Mater., 344-345, 213-216. https://doi.org/10.4028/www.scientific.net/KEM.348-349.213