DOI QR코드

DOI QR Code

An Exploration on physiology of Vasa, Meda, Majja in Ayurveda w.s.r. to adipose tissue.

  • Agrawal, Sonam (Department of Kriya Sharir, Faculty of Ayurveda, Institute of Medical Sciences) ;
  • Verma, Vandana (Department of Kriya Sharir, Faculty of Ayurveda, Institute of Medical Sciences) ;
  • Gehlot, Sangeeta (Department of Kriya Sharir, Faculty of Ayurveda, Institute of Medical Sciences)
  • Received : 2019.07.13
  • Accepted : 2019.08.13
  • Published : 2019.08.30

Abstract

Recent researches on adipocytes in human and mice model have reported that the adipocytes are not only the fat depots but having role in maintenance of physiology and metabolism through adipokines released by them in accordance to their anatomical location. Ayurveda scholars too have mentioned different tissues like Vasa (inter muscular fat), Meda (visceral fat) and Majja (bone marrow) which are predominantly rich in adipocytes similar to adipose tissues, with a different sites, functions, compositions and pathological outcomes. The metabolic effect of Meda and Majja Dhatu on other tissues like muscle (Mamsa Dhatu), bone (Asthi Dhatu) and reproductive tissue (Shukra Dhatu) shows their functional interdependence. The detailed description of therapeutic indications of Vasa and Majja under Snehakarma (oleation therapy) illustrates that clinical physiology of these tissues have been elaborated rather than general physiology. This article is an attempt to comprehend the physiological aspect of Vasa, Meda and Majja retrospectively on the basis of their therapeutic indication for the management of variety of disorders, in the form of Sneha through different therapeutic procedures. An effort has been also taken to distinguish Vasa, Meda, Majja based on the functional peculiarities of adipocytes present in different sites of body like omentum, muscle and bone marrow. Critical observation of explanations of Vasa, Meda and Majja in Ayurveda compendia and advanced research in field of adipocytes reflected that Ayurveda scholars had deep insights regarding the various dimensions of adipocytes, most of which are in consistent with the advanced physiology and biomolecular studies of adipocytes.

Keywords

References

  1. Acharya JM. Ashtanga Hridaya of Vagbhatta with Shashilekha Commentary of Indu. Fourth edition. (Varanasi, India: Chaukhambha Sanskrit Series office), 2016.
  2. Acharya JT. Charak Samhita of Agnivesha with Ayurvedadeepika commentary of Chakrapanidatta (Reprint edition). (Varanasi, India: Chowkhambha Prakashana), 2009.
  3. Acharya JT. Sushruta Samhita of Sushruta with Nibhandhasagraha commentary of Dalhan (Reprint edition). (Varanasi, India: Chaukhambha Sanskrit Sansthana), 2010.
  4. Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV, Rosen CJ, Klibanski A, Miller KK. Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity (Silver Spring). 2011:19(1):49-53. https://doi.org/10.1038/oby.2010.106
  5. Bruun JM, Lihn AS, Pedersen SB, Richelsen B. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT):implication of macrophages resident in the AT. J Clin Endocrinol Metab. 2005:90:2282-9. https://doi.org/10.1210/jc.2004-1696
  6. Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte EE. Brown Adipose Tissue Energy Metabolism in Humans. Front Endocrinol (Lausanne). 2018:9:447. https://doi.org/10.3389/fendo.2018.00447
  7. Contreras C, Gonzalez F, Ferno J, Dieguez C, Rahmouni K, Nogueiras R & Lopez M. The brain and brown fat. Annals of medicine. 2015:47(2), 150-168. https://doi.org/10.3109/07853890.2014.919727
  8. Emily S. Jungheim, Jennifer L. Travieso, Kenneth R. Carson, sand Kelle H. Moley. Obesity and Reproductive Function. Obstet Gynecol Clin North Am. 2012:39(4): 479-493. https://doi.org/10.1016/j.ogc.2012.09.002
  9. Ghazalpour A, Cespedes I, Bennett BJ, Allayee H. Expanding role of gut microbiota in lipid metabolism. Curr Opin Lipidol. 2016:27(2):141-7. https://doi.org/10.1097/MOL.0000000000000278
  10. Giralt M, Villarroya F. White, brown, beige/brite: different adipose cells for different functions?. Endocrinology. 2013:154(9): 2992-3000. https://doi.org/10.1210/en.2013-1403
  11. Gooley J. Circadian regulation of lipid metabolism. Proceedings of the Nutrition Society, 2016:75(4): 440-450. https://doi.org/10.1017/S0029665116000288
  12. Horowitz MC, Berry R, Holtrup B, et al. Bone marrow adipocytes. Adipocyte. 2017:6(3):193-204. https://doi.org/10.1080/21623945.2017.1367881
  13. Jain A, Polotsky AJ, Rochester D, Berga SL, Loucks T, Zeitlian G, Gibbs K, Polotsky HN, Feng S, Isaac B, Santoro N. Pulsatile luteinizing hormone amplitude and progesterone metabolite excretion are reduced in obese women. J Clin Endocrinol Metab. 2007:92(7):2468-73. https://doi.org/10.1210/jc.2006-2274
  14. Karimaghai N, Tamadon A, Rahmanifar F, Mehrabani D, Raayat Jahromi A, Zare S, Khodabandeh Z, Razeghian Jahromi I, Koohi-Hoseinabadi O, Dianatpour M. Spermatogenesis after transplantation of adipose tissue-derived mesenchymal stem cells in busulfan-induced azoospermic hamster. Iran J Basic Med Sci. 2018:21(7):660-667.
  15. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004:89(6):2548-56. https://doi.org/10.1210/jc.2004-0395
  16. Kunte AM, Navare KS. Ashtanga Hridaya of Vagbhatta with Sarvangasundara commentary of Arundatta (Reprinted.). (Varanasi, India: Chaukhambha Sanskrit Sansthana), 2009.
  17. Li F, Li Y, Duan Y, Hu CA, Tang Y, Yin Y. Myokines and adipokines: Involvement in the crosstalk between skeletal muscle and adipose tissue. Cytokine Growth Factor Rev. 2017:33:73-82. https://doi.org/10.1016/j.cytogfr.2016.10.003
  18. Li Q, Wu Y, Kang N. Marrow Adipose Tissue: Its Origin, Function, and Regulation in Bone Remodeling and Regeneration. Stem Cells International. 2018.
  19. Li Y, Meng Y, Yu X. The Unique Metabolic Characteristics of Bone Marrow Adipose Tissue. Front Endocrinol (Lausanne). 2019:10:69. https://doi.org/10.3389/fendo.2019.00069
  20. Ma X, Lee P, Chisholm DJ, James DE. Control of adipocyte differentiation in different fat depots; implications for pathophysiology or therapy. Front Endocrinol. 2015:6:1. https://doi.org/10.3389/fendo.2015.00001
  21. Min Du, Xu Yan, Jun F. Tong, Junxing Zhao, and Mei J. Zhu. Maternal Obesity, Inflammation, and Fetal Skeletal Muscle Development. Biology of reproduction. 2010:82:4-12. https://doi.org/10.1095/biolreprod.109.077099
  22. Oh KJ, Lee DS, Kim WK, Han BS, Lee SC, Bae KH. Metabolic Adaptation in Obesity and Type II Diabetes: Myokines, Adipokines and Hepatokines. Int J Mol Sci. 2016:18(1):8. https://doi.org/10.3390/ijms18010008
  23. Park A, Kim WK, Bae KH. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World J Stem Cells. 2014: 6(1):33-42 https://doi.org/10.4252/wjsc.v6.i1.33
  24. Pellegrinelli V, Carobbio S, Vidal-Puig A. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia. 2016:59(6):1075-88. https://doi.org/10.1007/s00125-016-3933-4
  25. Petrus P , Edholm D, Rosqvist F, Dahlman I, Sundbom M , Arner P, Ryden M, Riserus U. Depot-specific differences in fatty acid composition and distinct associations with lipogenic gene expression in abdominal adipose tissue of obese women. International journal of obesity. 2017:41:1295-1298. https://doi.org/10.1038/ijo.2017.106
  26. Sbarbati A, Accorsi D, Benati D, Marchetti L, Orsini G, Rigotti G, Panettiere P. Subcutaneous adipose tissue classification. Eur J Histochem. 2010:54(4):e48 https://doi.org/10.4081/ejh.2010.e48
  27. Scheller EL, Doucette CR, Learman BS, Cawthorn WP, Khandaker S, Schell B, Wu B, Ding SY, Bredella MA, Fazeli PK, Khoury B, Jepsen KJ, Pilch PF, Klibanski A, Rosen CJ, MacDougald OA. Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat Commun. 2015:6:7808. https://doi.org/10.1038/ncomms8808
  28. Simonds SE, Cowley MA, Enriori PJ. Leptin increasing sympathetic nerve outflow in obesity: A cure for obesity or a potential contributor to metabolic syndrome?. Adipocyte. 2012:1(3):177-181. https://doi.org/10.4161/adip.20690
  29. Tortoriello DV, McMinn J, Chua SC. Dietary-induced obesity and hypothalamic infertility in Female DBA/2J mice. Endocrinology. 2004:145(3):1238-1247. https://doi.org/10.1210/en.2003-1406
  30. Turner RT, Kalra SP, Wong CP, Philbrick KA, Lindenmaier LB, Boghossian S & Iwaniec UT. Peripheral leptin regulates bone formation. J Bone Miner Res. 2013:28(1):22-34. https://doi.org/10.1002/jbmr.1734
  31. Upadhyay J, Farr OM, Mantzoros CS. The role of leptin in regulating bone metabolism, Metabolism Clinical and Experimental. 2015:64(1):105-113. https://doi.org/10.1016/j.metabol.2014.10.021
  32. Vandana V, Agrawal S, Gehlot S. Ayurveda Perspectives on Chronobiological concerns in Human Biology. J Res Educ Indian Med. 2018:24(1-2): 23-31.
  33. Wang H, Leng Y and Gong Y .Bone Marrow Fat and Hematopoiesis. Front. Endocrinol. 2018:9:694. https://doi.org/10.3389/fendo.2018.00694
  34. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005:115(5):1111-9. https://doi.org/10.1172/JCI25102
  35. Yan X, Zhu MJ, Dodson MV, Du M. Developmental Programming of Fetal Skeletal Muscle and Adipose Tissue Development. Journal of Genomics. 2013:1:29-38. https://doi.org/10.7150/jgen.3930