DOI QR코드

DOI QR Code

미세먼지 예방행동의도 결정요인: 건강신념모델 확장을 중심으로

Determinants of Preventive Behavior Intention to the Particulate Matter: An Application of the Expansion of Health Belief Model

  • 정동훈 (광운대학교 미디어커뮤니케이션학부)
  • 투고 : 2019.07.01
  • 심사 : 2019.08.20
  • 발행 : 2019.08.28

초록

본 연구는 미세먼지 예방행동의도에 영향을 미치는 결정요인을 탐색하는 것을 목적으로 했다. 280명의 대학생들을 대상으로 한 설문조사 결과, 미세먼지에 대한 지각된 민감성과 지각된 장애는 예방행동의도에 통계적으로 유의한 영향을 미치지 못하였다. 그러나 미세먼지에 대한 지각된 심각성과 지각된 이익, 주관적 규범과 자기효능감은 예방행동의도에 통계적으로 유의한 긍정적 영향을 미치는 것으로 나타났다. 본 연구 결과를 통해 대학생들의 미세먼지 예방행동의도를 높이기 위해서는 지각된 심각성과 지각된 이익, 주관적 규범과 자기효능감을 높일 수 있는 커뮤니케이션 전략이 요구되며, 향후 미세먼지와 같은 환경위험에 대한 예방행동을 설명하는데 있어 일정 부분 기여할 것으로 판단된다.

The purpose of this study was to investigate the determinants of preventive behavior intention to the particulate matter. The results based on the survey of 280 university students showed that the perceived susceptibility and barriers to the particulate matter do not have statistically significant effects on the preventive behavior intention. However, perceived severity and benefits, subjective norm, and self-efficacy to the particulate matter had statistically significant positive effects on the preventive behavior intention. The results of this study suggested that communication strategies to increase perceived severity and benefits, subjective norm and self-efficacy should be required to improve the degree of preventive behavior intention to the particulate matter of college students. It is expected to contribute explaining preventive actions against environmental hazards such as air pollution in the future.

키워드

참고문헌

  1. Y. W. Kim, H. S. Lee, Y. J. Jang & H. J. Lee. (2015). How does media construct particulate matter risks?: A news frame and source analysis on particulate matter risks. Korean Journal of Journalism & Communication Studies, 59(2), 121-154.
  2. Y. W. Kim, H. S. Lee, H. J. Lee & Y. J. Jang. (2015). A study of the public's perception and opinion formation on particulate matter risk: Focusing on the moderating effects of the perceptions toward promotional news and involvement. Korean Journal of Communication & Information, 52-91.
  3. R. Cox. (2013). Enviromental communication and the public sphere(3rd ed.). Thousand Oaks, California: Sage.
  4. Y. W. Kim, H. S. Lee, H. J. Lee & Y. J. Jang. (2016). A study on differences between experts and lay people about risk perceptions toward particulate matter: A focus on the utilization of mental models. Communication Theories, 12(1), 53-117.
  5. H. J. Choi. (2017). Research of risk communication strategy for the enhancement of environmental risk perception and eco-friendly behavioral intention: Application of construcal-level theory on global warming and particulate matter risk message. Doctoral Dissertation, Sungkyunkwan University.
  6. N. Smith & A. Leiserowitz. (2012). The rise of global warming skepticism: Exploring affective image assoications in the United States over time. Risk Anlaysis, 32(6), 1021-1032. DOI: 10.1111/j.1539-6924.2012.01801.x
  7. S. H. Choi. (2018). A study on the factors affecting fine dust cognition, knowledge, and attitude among college students. The Journal of the Korea Contents Association, 18(12), 281-290. https://doi.org/10.5392/JKCA.2018.18.12.281
  8. I. M. Rosenstock. (1974). Historical origins of the health belief model. Health Education Monographs, 2(4), 328-335. https://doi.org/10.1177/109019817400200403
  9. K. Witte, G. Meyer & D. Martell. (2001). Effective health risk messages: A step-by-step guide. Sage.
  10. I. M. Rosenstock, V. Stretcher & M. Becker. (1994). The health belief model and HIV risk behavior. In R. DiClemente & J. Peterson. (ed.), Preventing AIDS: Theories and methods of behavioral intervnentions (pp. 5-22). New York: Plenum Press.
  11. M. Conner & P. Norman. (1995). Predicting health behavior: Research and practice with social cognition models. buckingham: Open University Press.
  12. N. K. Janz & M. H. Becker. (1984). The health belief model: A decade later. Health Education Quarterly, 11, 1-47. DOI: 10.1177/109019818401100101
  13. B. K. Lee, Y. K. Sohn, L. L. Sang, M. Y. Yoon, M. H. Kim & C. R. Kim. (2014). An efficacy of social cognitive theory to predict health behavior: A meta-analysis on the health belief model studies in Korea. Journal of Public Relations, 18(2), 163-206. https://doi.org/10.15814/jpr.2014.18.2.163
  14. J. A. Harrison, P. D. Mullen & L. W. Green. (1992). A meta-analysis of studies of the health belief model with adults. Health Education Research, 7, 107-116. DOI: 10.1093/her/7.1.107
  15. I. Ajzen. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
  16. V. Venkatesch & F. D. Davis. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. DOI: 10.1287/mnsc.46.2.186.11926
  17. N. M. AskeIson, S. Campo, J. B. Lowe, S. Smith, L. K. Dennis & J. Andsager. (2010). Using the theory of planned behavior to predict mothers' intention to vaccinate their daughters against HPV. The Journal of School Nursing, 26(3), 194-202. DOI: 10.1177/1059840510366022
  18. Y. W. Kim, H. N. Lee, H, I. Kim & H. J. Moon. (2017). A study on usage effect and acceptance factors of a particulate matter application (App). Journal of Public Relations, 21(4), 114-142. DOI: 10.15814/jpr.2017.21.4.114
  19. L. A. Martin, K. B. Haskard-ZoInierek & DiMatteo. (2010). Health behavior change and treatment adherence: Evidence-based guidelines for improving healthcare. New York: Oxford University Press.
  20. A. Bandura. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191-215. https://doi.org/10.1037/0033-295X.84.2.191
  21. V. Champion, C. S. Skinner & U. Menon. (2005). Development of a self-efficacy scale for mammography. Research in Nursing & Health, 28(4), 329-336. DOI: 10.1002/nur.20088
  22. T. Gore & C. C. Bracken. (2005). Testing the theoretical design of a helath risk message: Reexamining the major tenets of the extended parallel process model. Health Education & Behavior, 32(1), 27-41. DOI: 10.1177/1090198104266901
  23. B. K. Lee, H. J. Oh, K. A. Shin & J. Y. Ko. (2008). The effect of media campaign as a cue to action on influenza prevention behavior: Extending health belief model. Korean Journal of Advertising, 10(4), 108-138. http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE02499627
  24. Z. Sheng. (2015). User acceptance of mobile healthcare applications: An integrated model of UTAUT and HBM theory. The Korean Association for Policy Science, 19(3), 203-236. http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE06522193
  25. S. E. Jo, H. C. Shin, S. W. Yoo & H. S. Roh. (2012). The study of factors affecting tuberculosis preventive behavior intentions: An extension of HBM with mediating effects of self-efficacy and fear. Jornal of Public Realtions, 16(1), 148-177. https://doi.org/10.15814/jpr.2012.16.1.148
  26. J. S. Na. (2018). A study on the factors influencing the intention to wear a dustproof mask and effective communication planning. Master's Thesis, Hongik University.
  27. E. S. Park, H. J. Oh, S. H. Kim & A. R. Min. (2018). The relationships between particulate matter risk perception, knowledge, and health promoting behaviors among college students. Journal of Korean Biological Nursing Science, 20(1), 20-29. https://doi.org/10.7586/jkbns.2018.20.1.20
  28. S. U. Yun & J. G. Chang. (2018). A study on determinants of particulate matter prevention behavior intention based on SNS: Focused on SNS Users. Korean Journal of Communication & Information, 90, 74-98. https://doi.org/10.46407/kjci.2018.08.90.74
  29. S. J. Yoo, H. J. Jeong & H. S. Park. (2010). The analysis on factors affecting the intention for H1N1 virus vaccination and the impact of negative news reports the comparison between HBM and TPB. The Korean Journal of Advertising Public Relations, 12(3), 283-319.
  30. Y. W. Kim, H. S. Lee, Y. J. Jang & H. J. Lee. (2016). A cluster analysis on the risk of particulate matter: Focusing on difference of risk perception and risk related behaviors based on public segmentation. Journal of Public Relations, 20(3), 201-235. DOI : 10.15814/jpr.2016.20.3.201
  31. H. S. Lee & J. H. Lim. (2015). Structural equation model analysis and AMOS 22. Seoul: Jyphyunjae.
  32. J. Joo. (2017). Exploration of structural relations on health behavior related to particulate matter: Focused on multi-dimensional health locus of control, perceived susceptibility and severity, and health behavioral intention. Journal of the Korea Convergence Soceity, 8(11), 413-421.
  33. K. Witte & M. Allen. (2000). A meta-analysis of fear appeals: Implications for effective public health campaigns. Health and Education Behavior, 27, 591-615. DOI: 10.1177/109019810002700506