References
- G. V. Richieri, R. T. Ogata & A. M. Kleinfeld. (1994). Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB. The Journal of Biological Chemistry, 269(39), 23918-23930. PMID: 7929039 https://doi.org/10.1016/S0021-9258(19)51026-2
- A. Reese-wagoner, J. Thompson & L. Banaszak. (1999). Structural properties of the adipocyte lipid binding protein. Biochimca et Biophysica Acta, 1441(2-3), 106-116. DOI: 10.1016/S1388-1981(99)00154-7
- J. Thompson, J. Ory, A. Reese-wagoner & L. Banaszak. (1999a). The liver fatty acid binding protein-comparison of cavity properties of intracellular lipid-binding proteins. Molecular and Cellular Biochemistry, 192(1-2), 9-16. PMID: 10331654 https://doi.org/10.1023/A:1006806616963
- J. Thompson, A. Reese-wagoner & L. Banaszak. (1999b). Liver fatty acid binding protein: species variation and the accommodation of different ligands. Biochimca et Biophysica Acta 1441(2-3), 117-130. DOI: 10.1016/s1388-1981(99) 00146-8
- M. Furuhashi & G. S. Hotamisligil. (2008). Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nature Reviews Drug Discovery 7(6), 489-503. DOI: 10.1038/ nrd2589
- L. Makowski & G. S. Hotamisligil. (2005). The role of fatty acid binding proteins in metabolic syndrome and atherosclerosis. Current opinion in lipidology 16(5), 543-548. PMID: 16148539 https://doi.org/10.1097/01.mol.0000180166.08196.07
- E. P. Newberry, Y. Xie, S. M. Kennedy, J. Luo & N. O. Davidson. (2006). Protection against Western diet-induced obesity and hepatic steatosis in liver fatty acid-binding protein knockout mice. Hepatology, 44(5), 1191-1205. DOI: 10.1002/hep.21369
- E. P. Newberry, S. M. Kennedy, Y. Xie, B. T. Sternard, J. Luo & N. O. Davidson. (2008). Diet-induced obesity and hepatic steatosis in L-Fabp / mice is abrogated with SF, but not PUFA, feeding and attenuated after cholesterol supplementation. American Journal of Physiology Gastrointestinal and Liver Physiology, 294(1), G307-314. DOI: 10.1152/ajpgi. 00377.2007
- G. Siegenthaler, R. Hotz, D. Chatellard-Gruaz, L. Didierjean, U. Hellman, & J. H. Saurat. (1994). Purification and characterization of the human epidermal fatty acid-binding protein: localization during epidermal cell differentiation in vivo and in vitro. Biochemical Journal, 302(Pt 2), 363-371. DOI: 10.1042/bj3020363
- D. A. Bernlohr, M. A. Simpson, A. V. Hertzel, & L. J. Banaszak. (1997). Intracellular lipid-binding proteins and their genes. Annual Review of Nutrition, 17, 277-303. DOI: 10.1146/annurev.nutr.17.1.277
- J. amulin, I. Berget, S. Lien, & H. Sundvold. (2008). Differential gene expression of fatty acid binding proteins during porcine adipogenesis. Comparative Biochemistry and Physiology. Part B, Biochemical & Molecular Biolology, 151(2), 147-152. DOI: 10.1016/j.cbpb.2008. 06.010.
- N. H. Haunerland & F. Spener. (2004). Fatty acid-binding proteins--insights from genetic manipulations. Progress in Lipid Research, 43(4), 328-349. DOI: 10.1016/j.plipres.2004.05.001
- F. Guthmann, C. Schachtrup, A. Tolle, H. Wissel, B. Binas, H. Kondo, Y. Owada, F. Spener & B. Rustow. (2004). Phenotype of palmitic acid transport and of signalling in alveolar type II cells from E/H-FABP double-knockout mice: contribution of caveolin-1 and PPARgamma. Biochimca et Biophysica Acta, 1636(2-3), 196-204. DOI: 10.1016/j.bbalip.2003.10.015
- Y. Owada, H. Takano, H. Yamanaka, H. Kobayashi, Y. Sugitani, Y. Tomioka, I. Suzuki, R. Suzuki, T. Terui, M. Mizugaki, H. Tagami, T. Noda & H. KONDO. (2002b). Altered water barrier function in epidermal-type fatty acid binding protein-deficient mice. The Journal of Investigative Dermatology, 118(3), 430-435. DOI: 10.1046/j.0022-202x.2001.01616.x
- M. Hoekstra, M. Stitzinger, E. J. Van Wanrooij, I. N. Michon, J. K. Kruijt, J. Kamphorst, M. Van Eck, E. Vreugdenhil, T. J. Van Berkel & J. Kuiper. (2006). Microarray analysis indicates an important role for FABP5 and putative novel FABPs on a Western-type diet. Journal of Lipid Research, 47(10), 2198-2207. DOI: 10.1194/ jlr.M600095-JLR200
- J. Westerbacka, M. Kolak, T. Kiviluoto, P. Arkkila, J. Siren, A. Hamsten, R. M. Fisher & H. Yki-Jarvinen. (2007). Genes involved in fatty acid partitioning and binding, lipolysis, monocyte/macrophage recruitment, and inflammation are overexpressed in the human fatty liver of insulin-resistant subjects. Diabetes, 56(11), 2759-2765. DOI: 10.2337/db07-0156
- A. W. Thorburn, L. H. Storlien, A. B. Jenkins, S. Khouri & E. W. Kraegen. (1989). Fructose-induced in vivo insulin resistance and elevated plasma triglyceride levels in rats. The American Journal of Clinical Nutrition, 49(6), 1155-1163. DOI: 10.1093/ajcn/49.6.1155
- S. R. Witting, M. Brown, R. Saxena, S. Nabinger & N. Morral. (2008). Helper-dependent Adenovirus-mediated Short Hairpin RNA Expression in the Liver Activates the Interferon Response. The Journal of Biological Chemistry, 283(4), 2120-2128. DOI: 10.1074/jbc.M704178200
- K. A. Le & L. Tappy. (2006). Metabolic effects of fructose. Current Opinion in Clinical Nutrition and Metabolic Care, 9(4), 469-475. DOI: 10.1097/01.mco.0000232910.61612.4d
- N. Morral, H. J. Edenberg, S. R. Witting, J. Altomonte, T. Chu & M. Brown. (2007). Effects of glucose metabolism on the regulation of genes of fatty acid synthesis and triglyceride secretion in the liver. Journal of Lipid Research ,48(7), 1499-1510. DOI: 10.1194/jlr.M700090- JLR200
- K. L. Stanhope & P. J. Havel. (2008). Fructose consumption: potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance. Current opinion in lipidology, 19(1), 16-24. DOI: 10.1097/ MOL.0b013e3282f2b24a
- K. N. Maxwell, R. E. Soccio, E. M. Duncan, E. Sehayek & J. L. Breslow. (2003). Novel putative SREBP and LXR target genes identified by microarray analysis in liver of cholesterol-fed mice. Journal of Lipid Research, 44(11), 2109-2119. DOI: 10.1194/jlr.M300203- JLR200
- R. J. Mason, T. Pan, K. E. Edeen, L. D. Nielsen, F. Zhang, M. Longphre, M. R. Eckart & S. Neben. (2003). Keratinocyte growth factor and the transcription factors C/EBP alpha, C/EBP delta, and SREBP-1c regulate fatty acid synthesis in alveolar type II cells. Journal of Clinical Investigation, 112(2), 244-255. DOI: 10.1172/JCI16793
- Y. Chang, K. Edeen, X. Lu, M. De Leon & R. J. Mason. (2006). Keratinocyte growth factor induces lipogenesis in alveolar type II cells through a sterol regulatory element binding protein-1c-dependent pathway. American Journal of Respiratory Cell and Molecular Biology, 35(2), 268-274. DOI: 10.1165/rcmb.2006-0037OC
- J. S. Millar, S. J. Stone, U. J. Tietge, B. Tow, J. T. Billheimer, J. S. Wong, R. L. Hamilton, R. V. JR. Farese & D. J. Rader. (2006). Short-term overexpression of DGAT1 or DGAT2 increases hepatic triglyceride but not VLDL triglyceride or apoB production. J Lipid Res, 47(10), 2297-2305. DOI: 10.1194/jlr.M600213 -JLR200
- X. X. Yu, S. F. Murray, S. K. Pandey, S. L. Booten, D. Bao, X. Z. Song, S. Kelly, S. Chen, R. Mckay, B. P. Monia & S. Bhanot. (2005). Antisense oligonucleotide reduction of DGAT2 expression improves hepatic steatosis and hyperlipidemia in obese mice. Hepatology, 42(2), 362-371. DOI: 10.1002/hep.20783
- W. C. Man, M. Miyazaki, K. Chu & J. Ntambi. (2006). Colocalization of SCD1 and DGAT2: implying preference for endogenous monounsaturated fatty acids in triglyceride synthesis. Journal of Lipid Research, 47(9), 1928-1939. DOI: 10.1194/jlr.M600172-JLR200
- J. Storch & A. E. Thumser. (2000). The fatty acid transport function of fatty acid-binding proteins. Biochimca et Biophysica Acta, 1486(1), 28-44. DOI: 10.1016/s1388-1981(00)00046-9
- K. T. Hsu & J. Storch. (1996). Fatty acid transfer from liver and intestinal fatty acid-binding proteins to membranes occurs by different mechanisms. The Journal of Biological Chemistry, 271(23), 13317-13323. DOI: 10.1074/ jbc.271.23.13317
- H. Y. Koo, M. A. Wallig, B. H. Chung, T. Y. Nara, B. H. Cho & M. T. Nakamura. (2008). Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver. Biochimica et Biophysica Acta, 1782(5), 341-348. DOI: 10.1016/j.bbadis.2008.02.007
- H. Yamashita, M. Takenoshita, M. Sakurai, R. K. Bruick, W. J. Henzel, W. Shillinglaw, D. Arnot & K. Uyeda. (2001). A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proceedings of the National Academy of Science of United State of America, 98(16), 9116-9121. DOI: 10.1073/pnas.161284298
- L. Ma, L. N. Robinson & H. C. Towle. (2006). ChREBP*Mlx is the principal mediator of glucose-induced gene expression in the liver. The Journal of Biological Chemistry, 281(39), 28721-28730. DOI: 10.1074/jbc.M601576200
- H. A. Coller, C. Grandori, P. Tamayo, T. Colbert, E. S. Lander, R. N. Eisenman & T. R. Golub. (2000). Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proceedings of the National Academy of Science of United State of America, 97(7), 3260-3265. DOI: 10.1073/pnas.97.7.3260
- M. Munz, R. Zeidler & O. Gires. (2005). The tumour-associated antigen EpCAM upregulates the fatty acid binding protein E-FABP. Cancer Lett, 225(1), 151-157. DOI: 10.1016/j.canlet.2004. 11.048