DOI QR코드

DOI QR Code

Overexpression of the Metal Transport Protein1 gene (MTP1) in Arabidopsis Increased tolerance by expression site

금속전달 유전자(MTP1)의 과발현 애기장대에서 발현 위치에 따른 내성 증가 연구

  • Received : 2019.04.18
  • Accepted : 2019.06.22
  • Published : 2019.08.31

Abstract

Today's scientists try to remove heavy metals with many new technologies such as phytoremediation. One of the best cutting edge technologies is developing transgenic plants to remove certain heavy metal in soil. I constructed the transformation vector expressing T. goesingense Metal Transport Protein1 gene and TgMTP1: GFP genes. The transgenic plants were selected and confirmed the transformed genes into Arabidopsis thaliana genome. Expression was confirmed in several parts in Arabidopsis cells, tissues and organs. When TgMTP1 overexpressing Arabidopsis thaliana were subjected, transgenic plants showed higher heavy metal tolerance than non-transgenic. For further study I selected the transgenic plant lines with enhanced tolerance against four different heavy metals; Zn, Ni, Co, Cd. The accumulation of these metals in these plants was further analyzed. The TgMTP1 overexpressing Arabidopsis thaliana plant of selected lines are resistant against heavy metals. This plant is characterized by the expression of the MTP1 gene accumulating heavy metal in the vacuole and being simultaneously expressed on the plasma membrane. In conclusion, these plants may be used in plant purification applications, and as a plant with increased tolerance.

현대 과학자들은 식물정화공정과 같은 새로운 기술로 중금속을 제거하려고 한다. 이런 최첨단 기술 중 하나는 토양의 특정 중금속을 제거하는 형질 전환 식물을 개발하는 것이다. 본 연구자는 T. goingense Metal Transport Protein 1 유전자와 TgMTP1 : GFP 유전자를 발현하는 형질 전환 벡터를 구축했다. 형질전환체 식물을 선택하여 형질 전환 된 유전자를 애기 장대 게놈에서 확인했다. 발현은 Arabidopsis 세포, 조직 및 기관의 여러 부분에서 확인되었다. Arabidopsis thaliana에서 TgMTP1 과발현하는 식물에 중금속이온이 처리되었을 때 형질 전환 식물체는 비 형질 전환 체보다 중금속 내성이 높았다. 추가 연구를 위해 4 (Zn, Ni, Co, Cd.)가지 중금속에 대한 내성이 향상된 형질 전환 식물을 선택했다. 선택된 T3 TgMTP1 과다 발현 애기 장대 식물은 중금속에 내성이 증가된다. 이 식물은 액포 내에 중금속을 축적하고 동시에 원형질막에 발현되는 MTP1 유전자의 발현을 특징으로 한다. 결론적으로, 이러한 식물은 식물 정화 응용 분야 및 내성이 증가 된 식물로 사용될 수 있다.

Keywords

References

  1. Baker, AJ. 1981. Accumulators and excluders-strategies in the response of plants to heavy metals. J. Plant Nutrit. 3:643- 654 https://doi.org/10.1080/01904168109362867
  2. Clemens, S., Ma, J.F. 2016. Toxic Heavy Metal and Metalloid Accumulation in Crop Plants and Foods. Annu Rev Plant Biol. 2016 Apr 29; 67:489-512 https://doi.org/10.1146/annurev-arplant-043015-112301
  3. Etim, E.E. 2012. Phytoremediation and Its Mechanisms: Int. J. Env. Bio. 2(3):120-136
  4. Gustin, J.L., Loureiro, M.E., Kim, D., Na, G., Tikhonova, M., Salt, D.E. 2009. MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyper-accumulating plants. Plant J. 57:1116-1127 https://doi.org/10.1111/j.1365-313X.2008.03754.x
  5. Kim, D. 2015. Studies on nickel uptake in transgenic Arabidopsis thaliana introduced with TgMTP1 gene encoding metal tolerance protein. J. Plant Biotechnol (2015) 42:409- 413 https://doi.org/10.5010/JPB.2015.42.4.409
  6. Kim, D., Gustin, J.L., Lahner, B., Persns, M.W., Baek, D., Yun, D.J., Salt, D.E. 2004. The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Plant J. 39:237-251 https://doi.org/10.1111/j.1365-313X.2004.02126.x
  7. Kobae, Y., Uemura, T., Sato, M.H., Ohnishi, M., Mimura, T., Nakagawa, T., Maeshima, T.M. 2004. Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Phys. 45:1749-1758 https://doi.org/10.1093/pcp/pci015
  8. Kramer, U. 2005. Phytoremediation: novel approaches to cleaning up polluted soils. Curr. Opin. Biotechnol. 16:133-141 https://doi.org/10.1016/j.copbio.2005.02.006
  9. Kupper, H., Zhao, F.J., McGrath, S.P. 1999. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 119:305-311 https://doi.org/10.1104/pp.119.1.305
  10. Kupper, H., Lombi, E., Zhao, F.J., McGrath, S.P. 2000. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta, 212:75-84 https://doi.org/10.1007/s004250000366
  11. Kupper, H., Mijovilovich, A., Meyer-Klaucke, W., Kroneck, P.M.H. 2004. Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol. 134:748-757 https://doi.org/10.1104/pp.103.032953
  12. Persans, M.W., Nieman, K., Salt, D.E. 2001 Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc. Natl Acad. Sci. USA, 98:9995-10000 https://doi.org/10.1073/pnas.171039798
  13. Salt, D.E., Smith, R.D., Raskin, I. 1998. Phytoremediation. Annu. Rev. Plant physiol. Plant Mol. Biol. 49:643-668 https://doi.org/10.1146/annurev.arplant.49.1.643
  14. Weigel, D., Glazebrook, J. 2002. Arabidopsis A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  15. Zhang, J., Martinoia, E., Lee, Y. 2018. Vacuolar Transporters for Cadmium and Arsenic in Plants and their Applications in Phytoremediation and Crop Development. Plant Cell Physiol. 59(7):1317-1325. https://doi.org/10.1093/pcp/pcy006
  16. Bae, SD, Study on maximization and demonstration of biogas production in an anaerobic digester using a microbial agen, The Journal of the Convergence on Culture Technology, Vol.4(2), pp.179-183, 2018 https://doi.org/10.17703/JCCT.2018.4.2.179