DOI QR코드

DOI QR Code

R&D Trends of Thermoelectrochemical Cells

전기화학 열전지의 연구 개발 동향

  • Kang, Junsik (School of Undergraduate Studies, DGIST) ;
  • Kim, Kyunggu (Department of Energy Science and Engineering, DGIST) ;
  • Lee, Hochun (Department of Energy Science and Engineering, DGIST)
  • 강준식 (대구경북과학기술원기초학부) ;
  • 김경구 (대구경북과학기술원에너지공학전공) ;
  • 이호춘 (대구경북과학기술원에너지공학전공)
  • Received : 2019.07.05
  • Accepted : 2019.08.04
  • Published : 2019.08.31

Abstract

Most of low-grad heat (< $200^{\circ}C$) generated from industrial process and human body, is abandoned as waste heat. To harvest the waste heat, the thermoelectrics (TE) technology has been widely investigated so far. However, TE suffers from poor performance and high material cost. As an alternative to the TE device, the thermoelectrical cell (TEC) is gaining growing attention these days. The TEC features several advantages such as high Seebeck coefficient, low cost and design flexibility compared to TE, but its commercial viability was limited by its low heat-to-electricity conversion efficiency. However, recent reports have demonstrated that the performance of TEC can be markedly improved by employing novel electrode/electrolyte materials and by optimizing cell design. This article summarizes the recent progress of TECs in terms of the redox couples, electrolyte solvents and additives, electrode materials and cell design.

중저온 (<$200^{\circ}C$) 폐열은 중요한 청정 에너지원이다. 폐열 활용 방안 중 가장 대표적인 것은 열전기술이나, 최근 전기화학 열전지가 열전소자의 대안으로 주목받고 있다. 전기화학 열전지의 기전력은 산화/환원 전극 전위의 온도 의존성에 의해 발생하며, 출력 특성은 전기화학 반응에 수반되는 동역학과 물질 이동 과전압에 의해 결정된다. 전기화학 열전지는 열전소자보다 비용 및 설계 유연성이 장점이지만, 열전소자에 비해 낮은 열-전기 변환 효율로 인해 응용 범위가 제한되어왔다. 하지만 최근 새로운 전해질과 전극을 적용하여 전기화학 열전지의 성능을 크게 향상할 수 있음이 보고되고 있다. 이 총설은 전기화학 열전지용 산화/환원쌍, 수계/비수계 전해질과 첨가제, 전극 물질 및 전지 설계 측면에서 최근 연구 동향을 소개한다.

Keywords

References

  1. A. R. M. Siddique, S. Mahmud and B. Van Heyst, 'A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges' Renewable and Sustainable Energy Reviews, 73, 730-744 (2017). https://doi.org/10.1016/j.rser.2017.01.177
  2. T. Quickenden and Y. Mua, 'A review of power generation in aqueous thermogalvanic cells' J. Electrochem. Soc., 142, 3985-3994 (1995). https://doi.org/10.1149/1.2048446
  3. J. Agar and W. Breck, 'Thermal diffusion in non-isothermal cells. Part 1.-Theoretical relations and experiments on solutions of thallous salts' Transactions of the Faraday Society, 53, 167-178 (1957). https://doi.org/10.1039/TF9575300167
  4. P. Yang, K. Liu, Q. Chen, X. Mo, Y. Zhou, S. Li, G. Feng and J. Zhou, 'Wearable thermocells based on gel electrolytes for the utilization of body heat' Angew. Chem. Int. Ed., 55, 12050-12053 (2016). https://doi.org/10.1002/anie.201606314
  5. T. J. Abraham, D. R. MacFarlane and J. M. Pringle, 'Seebeck coefficients in ionic liquids-prospects for thermo-electrochemical cells' Chem. Commun., 47, 6260-6262 (2011). https://doi.org/10.1039/c1cc11501d
  6. M. A. Buckingham, F. Marken and L. Aldous, 'The thermoelectrochemistry of the aqueous iron (ii)/iron (iii) redox couple: significance of the anion and pH in thermogalvanic thermal-to-electrical energy conversion' Sustainable Energy & Fuels, 2, 2717-2726 (2018). https://doi.org/10.1039/C8SE00416A
  7. J. T. Hupp and M. J. Weaver, 'Solvent, ligand, and ionic charge effects on reaction entropies for simple transition-metal redox couples' Inorg. Chem., 23, 3639-3644 (1984). https://doi.org/10.1021/ic00190a042
  8. N. Sutin, M. J. Weaver and E. L. Yee, 'Correlations between outer-sphere self-exchange rates and reaction entropies for some simple redox couples' Inorg. Chem., 19, 1096-1098 (1980). https://doi.org/10.1021/ic50206a074
  9. D. Al-Masri, M. Dupont, R. Yunis, D. R. MacFarlane and J. M. Pringle, 'The electrochemistry and performance of cobalt-based redox couples for thermoelectrochemical cells' Electrochim. Acta, 269, 714-723 (2018). https://doi.org/10.1016/j.electacta.2018.03.032
  10. K. Kim and H. Lee, 'Thermoelectrochemical cells based on Li+/Li redox couples in LiFSI glyme electrolytes' Phys. Chem. Chem. Phys., 20, 23433-23440 (2018). https://doi.org/10.1039/C8CP03155J
  11. A. Taheri, D. R. MacFarlane, C. Pozo-Gonzalo and J. M. Pringle, 'Application of a water-soluble cobalt redox couple in free-standing cellulose films for thermal energy harvesting' Electrochim. Acta, 297, 669-675 (2019). https://doi.org/10.1016/j.electacta.2018.11.208
  12. M. Diaw, A. Chagnes, B. Carre, P. Willmann and D. Lemordant, 'Mixed ionic liquid as electrolyte for lithium batteries' J. Power Sources, 146, 682-684 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.068
  13. A. J. Bard and L. R. Faulkner, 'Electrochemical methods', 66, John Wiley & Sons, New York (2001).
  14. T. Kim, J. S. Lee, G. Lee, H. Yoon, J. Yoon, T. J. Kang and Y. H. Kim, 'High thermopower of ferri/ferrocyanide redox couple in organic-water solutions' Nano Energy, 31, 160-167 (2017). https://doi.org/10.1016/j.nanoen.2016.11.014
  15. M. A. Lazar, D. Al-Masri, D. R. MacFarlane and J. M. Pringle, 'Enhanced thermal energy harvesting performance of a cobalt redox couple in ionic liquid-solvent mixtures' Phys. Chem. Chem. Phys., 18, 1404-1410 (2016). https://doi.org/10.1039/C5CP04305K
  16. J. Duan, B. Yu, K. Liu, J. Li, P. Yang, W. Xie, G. Xue, R. Liu, H. Wang and J. Zhou, 'PN conversion in thermogalvanic cells induced by thermo-sensitive nanogels for body heat harvesting' Nano Energy, 57, 473-479 (2019). https://doi.org/10.1016/j.nanoen.2018.12.073
  17. P. F. Salazar, S. T. Stephens, A. H. Kazim, J. M. Pringle and B. A. Cola, 'Enhanced thermo-electrochemical power using carbon nanotube additives in ionic liquid redox electrolytes' Journal of materials chemistry a, 2, 20676-20682 (2014). https://doi.org/10.1039/C4TA04749D
  18. A. Taheri, D. R. MacFarlane, C. Pozo-Gonzalo and J. M. Pringle, 'Quasi-solid-State Electrolytes for Low-Grade Thermal Energy Harvesting using a Cobalt Redox Couple' ChemSusChem, 11, 2788-2796 (2018). https://doi.org/10.1002/cssc.201800794
  19. L. Jin, G. W. Greene, D. R. MacFarlane and J. M. Pringle, 'Redox-active quasi-solid-state electrolytes for thermal energy harvesting' ACS Energy Letters, 1, 654-658 (2016). https://doi.org/10.1021/acsenergylett.6b00305
  20. R. Hu, B. A. Cola, N. Haram, J. N. Barisci, S. Lee, S. Stoughton, G. Wallace, C. Too, M. Thomas and A. Gestos, 'Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell' Nano Lett., 10, 838-846 (2010). https://doi.org/10.1021/nl903267n
  21. M. S. Romano, N. Li, D. Antiohos, J. M. Razal, A. Nattestad, S. Beirne, S. Fang, Y. Chen, R. Jalili and G. G. Wallace, 'Carbon nanotube-reduced graphene oxide composites for thermal energy harvesting applications' Adv. Mater., 25, 6602-6606 (2013). https://doi.org/10.1002/adma.201303295
  22. H. Im, T. Kim, H. Song, J. Choi, J. S. Park, R. Ovalle-Robles, H. D. Yang, K. D. Kihm, R. H. Baughman and H. H. Lee, 'High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes' Nature communications, 7, 10600 (2016). https://doi.org/10.1038/ncomms10600
  23. T. J. Abraham, N. Tachikawa, D. R. MacFarlane and J. M. Pringle, 'Investigation of the kinetic and mass transport limitations in thermoelectrochemical cells with different electrode materials' Phys. Chem. Chem. Phys., 16, 2527-2532 (2014). https://doi.org/10.1039/C3CP54577F
  24. P. F. Salazar, S. Kumar and B. A. Cola, 'Design and optimization of thermo-electrochemical cells' J. Appl. Electrochem., 44, 325-336 (2014). https://doi.org/10.1007/s10800-013-0638-y
  25. T. Quickenden and Y. Mua, 'The power conversion efficiencies of a thermogalvanic cell operated in three different orientations' J. Electrochem. Soc., 142, 3652-3659 (1995). https://doi.org/10.1149/1.2048394
  26. S. W. Hasan, S. M. Said, M. F. M. Sabri, A. S. A. Bakar, N. A. Hashim, M. M. I. M. Hasnan, J. M. Pringle and D. R. MacFarlane, 'High thermal gradient in thermo-electrochemical cells by insertion of a poly (vinylidene fluoride) membrane' Scientific reports, 6, 29328 (2016). https://doi.org/10.1038/srep29328
  27. L. Zhang, T. Kim, N. Li, T. J. Kang, J. Chen, J. M. Pringle, M. Zhang, A. H. Kazim, S. Fang and C. Haines, 'High Power Density Electrochemical Thermocells for Inexpensively Harvesting Low?Grade Thermal Energy' Adv. Mater., 29, 1605652 (2017). https://doi.org/10.1002/adma.201605652
  28. A. Gunawan, C.-H. Lin, D. A. Buttry, V. Mujica, R. A. Taylor, R. S. Prasher and P. E. Phelan, 'Liquid thermoelectrics: review of recent and limited new data of thermogalvanic cell experiments' Nanoscale and Microscale Thermophysical Engineering, 17, 304-323 (2013). https://doi.org/10.1080/15567265.2013.776149
  29. B. Burrows, 'Discharge behavior of redox thermogalvanic cells' J. Electrochem. Soc., 123, 154-159 (1976). https://doi.org/10.1149/1.2132776
  30. T. J. Abraham, D. R. MacFarlane and J. M. Pringle, 'High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting' Energy & Environmental Science, 6, 2639-2645 (2013). https://doi.org/10.1039/c3ee41608a