DOI QR코드

DOI QR Code

Electrical Impedance Tomography for Material Profile Reconstruction of Concrete Structures

콘크리트 구조의 재료 물성 재구성을 위한 전기 임피던스 단층촬영 기법

  • Jung, Bong-Gu (Department of Civil Engineering, Hongik University) ;
  • Kim, Boyoung (Department of Civil Engineering, Hongik University) ;
  • Kang, Jun Won (Department of Civil Engineering, Hongik University) ;
  • Hwang, Jin-Ha (Department of Materials Science and Engineering, Hongik University)
  • 정봉구 (홍익대학교 토목공학과) ;
  • 김보영 (홍익대학교 토목공학과) ;
  • 강준원 (홍익대학교 토목공학과) ;
  • 황진하 (홍익대학교 신소재공학과)
  • Received : 2019.07.02
  • Accepted : 2019.07.19
  • Published : 2019.08.31

Abstract

This paper presents an optimization framework of electrical impedance tomography for characterizing electrical conductivity profiles of concrete structures in two dimensions. The framework utilizes a partial-differential-equation(PDE)-constrained optimization approach that can obtain the spatial distribution of electrical conductivity using measured electrical potentials from several electrodes located on the boundary of the concrete domain. The forward problem is formulated based on a complete electrode model(CEM) for the electrical potential of a medium due to current input. The CEM consists of a Laplace equation for electrical potential and boundary conditions to represent the current inputs to the electrodes on the surface. To validate the forward solution, electrical potential calculated by the finite element method is compared with that obtained using TCAD software. The PDE-constrained optimization approach seeks the optimal values of electrical conductivity on the domain of investigation while minimizing the Lagrangian function. The Lagrangian consists of least-squares objective functional and regularization terms augmented by the weak imposition of the governing equation and boundary conditions via Lagrange multipliers. Enforcing the stationarity of the Lagrangian leads to the Karush-Kuhn-Tucker condition to obtain an optimal solution for electrical conductivity within the target medium. Numerical inversion results are reported showing the reconstruction of the electrical conductivity profile of a concrete specimen in two dimensions.

이 논문은 재료의 전기 전도도 분포를 재구성하는 전기임피던스 단층이미지 기법(electrical impedance tomography; EIT)을 제시한다. 이 문제는 구조물 표면의 전극에서 측정된 전위와 계산된 전위의 차를 최소화하여 전기 전도도의 공간적 분포를 재구성하는 최적화 문제로 정의된다. 전류 입력 시 전위를 구하는 정해석 문제의 수학적 모델로서 완전전극모델(complete electrode model; CEM)을 사용하였다. 완전전극모델은 전기 포텐셜에 대한 라플라스 방정식과 전류 입력에 따른 경계조건들로 구성되는 경계값 문제이다. 완전전극모델 해의 정확성을 검증하기 위하여 유한요소법을 이용해 구한 원형 구조물의 전위해와 Technology Computer Aided Design(TCAD) 소프트웨어를 사용해 얻은 결과를 비교하였다. 완전전극모델의 지배방정식과 경계조건을 구속조건으로 하는 최적화 문제를 라그랑주 승수법(lagrange multiplier method)을 이용해 비구속 최적화 문제로 전환하고 라그랑지안의 1차 최적화 조건으로부터 전극에서의 전위 차를 최소화하는 최적의 전기전도도 분포를 도출하였다. 원형 균일영역의 전기 전도도 분포를 재구성하는 역해석 예제를 통해 완전전극모델 기반 EIT 프레임워크의 적용성을 검토하였다.

Keywords

References

  1. Cheng, K.S., Isaacson, D., Newell, J.C., Gisser, D.G. (1989) Electrode Models for Electric Current Computed Tomography, IEEE Trans. Biomed. Eng., 36(9), pp.918-924. https://doi.org/10.1109/10.35300
  2. Cheney, M., Isaacson, D., Newell, J.C., Simske, S., Goble, J. (1990) NOSER: An Algorithm for Solving the Inverse Conductivity Problem, Int. J. Imaging Syst. & Technol., 2(2), pp.66-75. https://doi.org/10.1002/ima.1850020203
  3. Cheney, M., Isaacson, D., Newell, J.C. (1999) Electrical Impedance Tomography, SIAM Rev., 41(1), pp.85-101. https://doi.org/10.1137/S0036144598333613
  4. Vauhkonen, P.J., Vauhkonen, M., Savolainen, T., Kaipio, J.P. (1999) Three-Dimensional Electrical Iimpedance Tomography based on the Complete Electrode Model, IEEE Trans. Biomed. Eng., 46(9), pp.1150-1160. https://doi.org/10.1109/10.784147
  5. Kang, J.W., Kallivokas, L.F. (2010) Mixed Unsplit-field Perfectly-matched-layers for Transient Simulations of Scalar Waves in Heterogeneous Domains, Comput. Geosci., 14(4), pp.623-648. https://doi.org/10.1007/s10596-009-9176-4
  6. Kang, J.W., Kallivokas, L.F. (2011) The Inverse Medium Problem in Heterogeneous PML-Truncated Domains using Scalar Probing Waves, Comput. Methods Appl. Mech. & Eng., 200(1-4), pp.265-283. https://doi.org/10.1016/j.cma.2010.08.010
  7. Kang, J.W. (2013) Time-Domain Elastic Full-Waveform Inversion Using One-dimensional Mesh Continuation Scheme, J. Comput. Struct. Eng. Inst. Korea, 26(4), pp.213-221. https://doi.org/10.7734/COSEIK.2013.26.4.213
  8. Hadinia, M., Jafari, R., Soleimani, M. (2016) EIT Image Reconstruction based on a Hybrid FE-EFG Forward Method and the Complete-Electrode Model, Physiol. Meas., 37(6), p.863. https://doi.org/10.1088/0967-3334/37/6/863
  9. Hallaji, M., Seppanen, A., Pour-Ghaz, M. (2014) Electrical Impedance Tomography-based Sensing Skin for Quantitative Imaging of Damage in Concrete, Smart Mater. & Struct., 23(8), 085001. https://doi.org/10.1088/0964-1726/23/8/085001