DOI QR코드

DOI QR Code

Fabrication of Fiber Gas Sensor and Analysis of NOx Gas Detection Characteristics

화이버 가스 센서 제작 및 NOx 가스 검출 특성 분석

  • Son, Ju Hyeong (Department of Electrical Engineering, Gachon University) ;
  • Kim, Hyun Soo (Department of Smart Media, ChungKang College of Cultural Industries) ;
  • Yoon, Young Ki (Department of Computer Science, Gachon University) ;
  • Jang, Kyung Uk (Department of Electrical Engineering, Gachon University)
  • 손주형 (가천대학교 전기공학과) ;
  • 김현수 (청강문화산업대학교 스마트미디어학과) ;
  • 윤영기 (가천대학교 컴퓨터공학과) ;
  • 장경욱 (가천대학교 전기공학과)
  • Received : 2019.05.09
  • Accepted : 2019.05.23
  • Published : 2019.09.01

Abstract

In this study, we produced a light, flexible, wearable gas sensor by depositing MWCNTs (Multi-walled Carbon Nanotubes) into nylon. MWCNTs are widely used as a gas sensor material due to their excellent mechanical, electrical and physical characteristics. We produced a gas sensor to detect NOx gases by depositing nylon yarn in a MWCNT solution. The MWCNT solution was made by mixing 3 mg MWCNT in 5 ml of ethanol. Nylon yarn was placed in the manufactured solution and ultrasonic waves were applied using an ultrasonicator for 3 h, resulting in MCWNT deposition. The MWCNT-deposited nylon yarn was dried at room temperature for 24 h. The MWCNT-thin-film-coated nylon yarn was masked 1 mm apart, and gold was then deposited on the masked nylon yarn to create the gas sensor. The sensor then was installed in a chamber with a controlled atmospheric environment and exposed to NOx gas. The changing signal from the sensor was amplified to analyze its gas detection characteristics.

Keywords

References

  1. P. Glarborg, J. A. Miller, B. Ruscic, and S. J. Klippenstein, Prog. Energy Combust. Sci., 67, 31 (2018). [DOI: https://doi.org/10.1016/j.pecs.2018.01.002]
  2. Z. Gao, Z. Lou, S. Chen, L. Li, K. Jiang, Z. Fu, W. Han, and G. Shen, Nano Res., 11, 511 (2018). [DOI: https://doi.org/10.1007/s12274-017-1661-9]
  3. D. Maity, K. Rajavel, and R.T.R. Kumar, Sens. Actuators, B, 261, 297 (2018). [DOI: https://doi.org/10.1016/j.snb.2018.01.152]
  4. R. Benlikaya, P. Slobodian, K. Proisl, U. Cvelbar, and I. Morozov, Sens. Actuators, B, 283, 478 (2019). [DOI: https://doi.org/10.1016/j.snb.2018.11.160]
  5. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud'homme, I. A. Aksay, and R. Car, Nano Lett., 8, 36 (2008). [DOI: https://doi.org/10.1021/nl071822y]
  6. I. S. Zaine, N.A.M. Napiah, A. M. Yusof, A. N. Alias, A.M.M. Ail, and S. H. Khalid, Appl. Mech. Mater., 661, 8 (2014). [DOI:https://doi.org/10.4028/www.scientific.net/AMM.661.8]
  7. T. Ueda, M.M.H. Bhuiyan, H. Norimatsu, S. Katsuki, T. Ikegami, and F. Mitsugi, Physica E, 40, 2272 (2008). [DOI:https://doi.org/10.1016/j.physe.2007.12.006]
  8. Y. J. Yun, W. G. Hong, N. J. Choi, B. H. Kim, Y. Jun, and H. K. Lee, Sci. Rep., 5, 10904 (2015). [DOI: https://doi.org/10.1038/srep10904]
  9. H. S. Kim and K. U. Jang, J. Korean Inst. Electr. Electron. Mater. Eng., 31, 521 (2018). [DOI: https://doi.org/10.4313/JKEM.2018.31.7.521]
  10. Y. M. Wang, A. V. Hanza, and E. Ma, Acta Mater., 54, 2715 (2006). [DOI: https://doi.org/10.1016/j.actamat.2006.02.013]