DOI QR코드

DOI QR Code

Effect of Thermal Annealing on Resistance of Yarned Carbon Nanotube Fiber for the Use of Shunt Resistor

션트 저항체의 제작을 위한 Yarned CNT Fiber 저항에 대한 열처리의 영향

  • Yoon, Jonghyun (Department of Electrical Engineering, Kyungbuk College) ;
  • Lee, Sunwoo (Department of Electrical Information, Inha Technical College)
  • 윤종현 (경북전문대학교 전기과) ;
  • 이선우 (인하공업전문대학 전기정보과)
  • Received : 2019.07.22
  • Accepted : 2019.08.05
  • Published : 2019.09.01

Abstract

We prepared yarned carbon nanotube (CNT) fibers from a CNT forest synthesized on a Si wafer by chemical vapor deposition (CVD). The yarned CNT fibers were thermally annealed to reduce their resistance by removing the amorphous carbonaceous impurities present in the fibers. The resistance of the yarned CNT fiber gradually decreased with an increase in the annealing temperature from $200^{\circ}C$ to $400^{\circ}C$ but increased again above $450^{\circ}C$. We carried out thermogravimetric analysis (TGA) to confirm the burning properties of the amorphous carbonaceous impurities and the crystalline CNTs present in the fibers. The pattern of the mass change of the sample CNT fibers was very similar to that of the resistance change. We conclude that CNT fibers should be thermally annealed at temperatures below $400^{\circ}C$ for reducing and stabilizing their resistance.

Keywords

References

  1. E. M. Kim, S. H. Lee, D. K Cho, and S. H. Kim, Trans. Korean. Inst. Elect. Eng., 63, 1070 (2014). [DOI: https://doi.org/10.5370/KIEE.2014.63.8.1070]
  2. Y. Ren and J. Fang, IEEE Trans. Ind. Electron., 59, 4590 (2012). [DOI: https://doi.org/10.1109/TIE.2011.2179277]
  3. Y. G. Ko, C. W. Lee, S. Namkung, D. H. Lee, and D. H. Sin, Trans. Mater. Proc., 18, 476 (2009). [DOI: https://doi.org/10.5228/KSPP.2009.18.6.476]
  4. E. M. Kim, H. C. Kim, and S. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 31, 107 (2018) [DOI: https://doi.org/10.4313/JKEM.2018.31.2.107]
  5. S. Lee, E. M. Kim, and Y. Lim, Sci. Rep., 9, 7763 (2019) [DOI:https://doi.org/10.1038/s41598-019-44182-7]
  6. P. L. McEuen, M. S. Fuhrer, and H. Park, IEEE Trans. Nanotechnol., 1, 78 (2002). [DOI: https://doi.org/10.1109/TNANO.2002.1005429]
  7. E. Flahaut, R. Bacsa, A. Peigney, and C. Laurent, Chem. Commun., 2003, 1442 (2003). [DOI: https://doi.org/10.1039/b301514a]
  8. J. W. Mintmire, B. I. Dunlap, and C. T. White, Phys. Rev. Lett., 68, 631 (1992). [DOI: https://doi.org/10.1103/PhysRevLett.68.631]
  9. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science, 273, 483 (1996). [DOI: https://doi.org/10.1126/science.273.5274.483]
  10. P. X. Hou, C. Liu, and H. M. Cheng, Carbon, 46, 2003 (2008). [DOI: https://doi.org/10.1016/j.carbon.2008.09.009]
  11. Y. Lim and S. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 59 (2017). [DOI: https://doi.org/10.4313/JKEM.2017.30.1.59]
  12. A. H. Barber, S. R. Cohen, and H. D. Wagner, Phys. Rev. Lett., 92, 186103 (2004). [DOI: https://doi.org/10.1103/PhysRevLett.92.186103]
  13. H. Hu, B. Zhao, M. E. Itkis, and R. C. Haddon, J. Phys. Chem. B, 107, 13838 (2003). [DOI: https://doi.org/10.1021/jp035719i]