DOI QR코드

DOI QR Code

Quantum Dot Light-Emitting Diodes with Poly-TPD/PVK Bilayer Hole Transport Layer

Poly-TPD/PVK 이중 박막 정공수송층 구조의 양자점발광다이오드

  • Kim, Hyun Soo (Department of Electronics and Information Engineering, Soonchunhyang University) ;
  • Lee, Do Hyung (Department of Electronics and Information Engineering, Soonchunhyang University) ;
  • Kim, Bada (Department of Electronics and Information Engineering, Soonchunhyang University) ;
  • Hwang, Bo Ram (Department of Electronics and Information Engineering, Soonchunhyang University) ;
  • Kim, Chang Kyo (Department of Electronics and Information Engineering, Soonchunhyang University)
  • 김현수 (순천향대학교 전자정보공학과) ;
  • 이도형 (순천향대학교 전자정보공학과) ;
  • 김바다 (순천향대학교 전자정보공학과) ;
  • 황보람 (순천향대학교 전자정보공학과) ;
  • 김창교 (순천향대학교 전자정보공학과)
  • Received : 2019.06.27
  • Accepted : 2019.07.18
  • Published : 2019.09.01

Abstract

A poly[bis(4-butypheny)-bis(phenyl)benzidine] (poly-TPD) and poly(9-vinylcarbazole) (PVK) bilayer was employed as a hole transport layer (HTL) in solution-processed CdSe/ZnS quantum dot light-emitting diodes (QLEDs). The thickness of the PVK layer spin-coated onto the poly-TPD layer, whose thickness was fixed to 40 nm, was varied, with PVK layer thicknesses of 0 nm, 35 nm, 45 nm, and 55 nm. Because the thickness of the PVK can determine the hole transport properties of the HTL, a PVK thickness that maximizes the performance of the HTL for the QLEDs was investigated. By employing the optimized PVK thickness of 45 nm, the current efficiency of the QLED exhibited a 1.74 times improvement when compared with that of the QLED with poly-TPD based HTL without PVK. This was mainly attributed to the decrease in the energy barrier between the HTL and the quantum dot (QD) emitting layer (EML).

Keywords

References

  1. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic, Nano Lett., 9, 2532 (2009). [DOI: https://doi.org/10.1021/nl9002969]
  2. X. Yang, D. Zhao, K. S. Leck, S. T. Tan, Y. X. Tang, J. Zhao, H. V. Demir, and X. W. Sun, Adv. Mater., 24, 4180 (2012). [DOI: https://doi.org/10.1002/adma.201104990]
  3. W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, Nano Lett., 10, 2368 (2010). [DOI: https://doi.org/10.1021/nl100168s]
  4. L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, Nat. Photonics, 5, 543 (2011). [DOI: https://doi.org/10.1038/nphoton.2011.171]
  5. Z. Zhong, J. Zou, C. Jiang, L. Lan, C. Song, Z. He, L. Mu, L. Wang, J. Wang, J. Peng, and Y. Cao, Org. Electron., 58, 245 (2018). [DOI: https://doi.org/10.1016/j.orgel.2018.04.014]
  6. J. S. Steckel, P. Snee, S. Coe-Sullivan, J. P. Zimmer, J. E. Halpert, P. Anikeeva, L. A. Kim, V. Bulovic, and M. G. Bawendi, Angew. Chem., 45, 5796 (2006). [DOI: https://doi.org/10.1002/anie.200600317]
  7. V. Wood and V. Bulovic, Nano Rev., 1, 5202 (2010). [DOI:https://doi.org/10.3402/nano.v1i0.5202]
  8. Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, Nat. Photonics, 7, 13 (2012). [DOI: https://doi.org/10.1038/nphoton.2012.328]
  9. V. Wood, M. J. Panzer, J. E. Halpert, J. M. Caruge, M. G. Bawendi, and V. Bulovic, ACS Nano, 3, 3581 (2009). [DOI:https://doi.org/10.1021/nn901074r]
  10. J. M. Caruge, J. E. Halpert, V. Bulovic, and M. G. Bawendi, Nano Lett., 6, 2991 (2006). [DOI: https://doi.org/10.1021/nl0623208]
  11. R. Vasan, H. Salman, and O. Manasreh, IEEE Electron Device Lett., 39, 536 (2018). [DOI: https://doi.org/10.1109/LED.2018.2808679]
  12. Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, Nat. Photonics, 9, 259 (2015). [DOI: https://doi.org/10.1038/nphoton.2015.36]
  13. C. Jiang, H. Liu, B. Liu, Z. Zhong, J. Zou, J. Wang, L. Wang, J. Peng, and Y. Cao, Org. Electron., 31, 82 (2016). [DOI:https://doi.org/10.1016/j.orgel.2016.01.009]
  14. H. Zhang, H. Li, X. Sun, and S. Chen, ACS Appl. Mater. Interfaces, 8, 5493 (2016). [DOI: https://doi.org/10.1021/acsami.5b12737]
  15. X. Zhang, H. Dai, J. Zhao, S. Wang, and X. Sun, Thin Solid Films, 603, 187 (2016). [DOI: https://doi.org/10.1016/j.tsf.2016.02.017]
  16. J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, Nat. Photonics, 2, 247 (2008). [DOI: https://doi.org/10.1038/nphoton.2008.34]
  17. A. Castan, H. M. Kim, and J. Jiang, ACS Appl. Mater. Interfaces, 6, 2508 (2014). [DOI: https://doi.org/10.1021/am404876p]
  18. J. H. Yu, S. B. Heo, M. Kim, Y. Yi, and S. J. Kang, Thin Solid Films, 687, 137444 (2019). [DOI: https://doi.org/10.1016/j.tsf.2019.137444]
  19. X. L Zhang, H. T. Dai, J. L. Zhao, C. Li, S. G. Wang, and X. W. Sun, Thin Solid Films, 567, 72 (2014). [DOI: https://doi.org/10.1016/j.tsf.2014.07.030]
  20. A. Balati, A. Bazilio, A. Shahriar, K. Nash, and H. J. Shipley, Mater. Sci. Semicond. Process., 99, 68 (2019). [DOI:https://doi.org/10.1016/j.mssp.2019.04.017]
  21. G. R. Yi, H. S. Kim, K. W. Jeong, and C. K. Kim, Mol. Cryst. Liq. Cryst., 651, 99 (2017). [DOI: https://doi.org/10.1080/09273948.2017.1338904]
  22. G. Klarner, J. I. Lee, V. Y. Lee, E. Chan, J. P. Chen, A. Nelson, D. Markiewicz, R. Siemens, J. C. Scott, and R. D. Miller, Chem. Mater., 11, 1800 (1999). [DOI: https://doi.org/10.1021/cm990027l]
  23. K. W. Jeong, H. S. Kim, G. R. Yi, and C. K. Kim, Mol. Cryst. Liq. Cryst., 663, 61 (2018). [DOI: https://doi.org/10.1080/15421406.2018.1468099]
  24. M. C. Schlamp, X. Peng, and A. P. Alivisatos, J. Appl. Phys., 82, 5837 (1997). [DOI: https://doi.org/10.1063/1.366452]