DOI QR코드

DOI QR Code

Recent developments and challenges in welding of magnesium to titanium alloys

  • Auwal, S.T. (Department of Mechanical Engineering, Faculty of Engineering, Kano University of Science and Technology) ;
  • Ramesh, S. (Center of Advanced Manufacturing and Materials Processing (AMMP), Department of Mechanical Engineering, Faculty of Engineering, University of Malaya) ;
  • Tan, Caiwang (Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai) ;
  • Zhang, Zequn (Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai) ;
  • Zhao, Xiaoye (Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai) ;
  • Manladan, S.M. (Department of Mechanical Engineering, Faculty of Engineering, Bayero University)
  • 투고 : 2019.04.27
  • 심사 : 2019.06.01
  • 발행 : 2019.03.25

초록

Joining of Mg/Ti hybrid structures by welding for automotive and aerospace applications has attracted great attention in recent years due mainly to its potential benefit of energy saving and emission reduction. However, joining them has been hampered with many difficulties due to their physical and metallurgical incompatibilities. Different joining processes have been employed to join Mg/Ti, and in most cases in order to get a metallurgical bonding between them was the use of an intermediate element at the interface or mutual diffusion of alloying elements from the base materials. The formation of a reaction product (in the form of solid solution or intermetallic compound) along the interface between the Mg and Ti is responsible for formation of a metallurgical bond. However, the interfacial bonding achieved and the joints performance depend significantly on the newly formed reaction product(s). Thus, a thorough understanding of the interaction between the selected intermediate elements with the base metals along with the influence of the associated welding parameters are essential. This review is timely as it presents on the current paradigm and progress in welding and joining of Mg/Ti alloys. The factors governing the welding of several important techniques are deliberated along with their joining mechanisms. Some opportunities to improve the welding of Mg/Ti for different welding techniques are also identified.

키워드

과제정보

연구 과제 주관 기관 : University of Malaya

참고문헌

  1. Acherjee, B. (2018), "Hybrid laser arc welding: State-of-art review", Optics Laser Technol., 99, 60-71. https://doi.org/10.1016/j.optlastec.2017.09.038
  2. Amer, A.E., Koo, M.Y., Lee, K.H., Kim, S.H. and Hong, S.H. (2010), "Effect of welding heat input on microstructure and mechanical properties of simulated HAZ in Cu containing microalloyed steel", J. Mater. Sci., 45(5), 1248-1254. https://doi.org/10.1007/s10853-009-4074-7
  3. Aonuma, M. and Nakata, K. (2009), "Effect of alloying elements on interface microstructure of Mg-Al-Zn magnesium alloys and titanium joint by friction stir welding", Mater. Sci. Eng.: B, 161(1), 46-49. https://doi.org/10.1016/j.mseb.2009.02.020
  4. Aonuma, M. and Nakata, K. (2010), "Effect of calcium on intermetallic compound layer at interface of calcium added magnesium-aluminum alloy and titanium joint by friction stir welding", Mater. Sci. Eng.: B, 173(1), 135-138. https://doi.org/10.1016/j.mseb.2009.12.015
  5. Aonuma, M. and Nakata, K. (2012), "Dissimilar metal joining of ZK60 magnesium alloy and titanium by friction stir welding", Mater. Sci. Eng.: B, 177(7), 543-548. https://doi.org/10.1016/j.mseb.2011.12.031
  6. Ascari, A., Fortunato, A., Orazi, L. and Campana, G. (2012), "The influence of process parameters on porosity formation in hybrid LASER-GMA welding of AA6082 aluminum alloy", Optics Laser Technol., 44(5), 1485-1490. https://doi.org/10.1016/j.optlastec.2011.12.014
  7. Atabaki, M.M., Nikodinovski, M., Chenier, P., Ma, J., Liu, W. and Kovacevic, R. (2014), "Experimental and numerical investigations of hybrid laser arc welding of aluminum alloys in the thick T-joint configuration", Optics Laser Technol., 59, 68-92. https://doi.org/10.1016/j.optlastec.2013.12.008
  8. Atieh, A.M. (2013), "Transient Liquid Phase Diffusion Bonding of Magnesium Alloy (Mg-AZ31) to Titanium Alloy (Ti-6Al-4V)", Ph.D. Dissertation; University of Calgary, Canada.
  9. Atieh, A.M. and Khan, T.I. (2013), "Effect of process parameters on semi-solid TLP bonding of Ti-6Al-4V to Mg-AZ31", J. Mater. Sci., 48(19), 6737-6745. https://doi.org/10.1007/s10853-013-7475-6
  10. Atieh, A.M. and Khan, T.I. (2014a), "Application of Ni and Cu nanoparticles in transient liquid phase (TLP) bonding of Ti-6Al-4V and Mg-AZ31 alloys", J. Mater. Sci., 49(22), 7648-7658. https://doi.org/10.1007/s10853-014-8473-z
  11. Atieh, A.M. and Khan, T.I. (2014b), "Effect of interlayer thickness on joint formation between Ti-6Al-4V and Mg-AZ31 alloys", J. Mater. Eng. Perform., 23(11), 4042-4054. https://doi.org/10.1007/s11665-014-1179-1
  12. Atieh, A.M. and Khan, T.I. (2014c), "TLP bonding of Ti-6Al-4V and Mg-AZ31 alloys using pure Ni electro-deposited coats", J. Mater. Process. Technol., 214(12), 3158-3168. https://doi.org/10.1016/j.jmatprotec.2014.07.028
  13. Atieh, A.M. and Khan, T.I. (2014d), "Transient liquid phase (TLP) brazing of Mg-AZ31 and Ti-6Al-4V using Ni and Cu sandwich foils", Sci. Technol. Weld. Join., 19(4), 333-342. https://doi.org/10.1179/1362171814Y.0000000196
  14. Auwal, S., Ramesh, S., Yusof, F. and Manladan, S. (2018a), "A review on laser beam welding of copper alloys", Int. J. Adv. Manuf. Technol., 96(1-4), 475-490. https://doi.org/10.1007/s00170-017-1566-5
  15. Auwal, S.T., Ramesh, S., Yusof, F. and Manladan, S.M. (2018b), "A review on laser beam welding of titanium alloys", Int. J. Adv. Manuf. Technol., 97(1), 1071-1098. https://doi.org/10.1007/s00170-018-2030-x
  16. Auwal, S.T., Ramesh, S., Yusof, F., Tan, C.W., Zhang, Z.Q., Zhao, X.Y. and Manladan, S.M. (2019a), "Comparative study on characteristics of laser welded-brazed AZ31/Ti-6Al-4V lap joints with and without coatings", Int. J.of Adv. Manuf. Technol., 101(1-4), 1023-1040. https://doi.org/10.1007/s00170-018-2903-z
  17. Auwal, S.T., Ramesh, S., Zhang, Z., Liu, J., Tan, C., Manladan, S.M., Yusof, F. and Tarlochan, F. (2019b), "Influence of electrodeposited Cu-Ni layer on interfacial reaction and mechanical properties of laser welded-brazed Mg/Ti lap joints", J. Manuf. Process., 37, 251-265. https://doi.org/10.1016/j.jmapro.2018.11.029
  18. Avedesian, M.M. and Baker, H. (1999), ASM specialty handbook: magnesium and magnesium alloys: ASM International.
  19. Baqer, Y.M., Ramesh, S., Yusof, F. and Manladan, S. (2018), "Challenges and advances in laser welding of dissimilar light alloys: Al/Mg, Al/Ti, and Mg/Ti alloys", Int. J. Adv. Manuf. Technol., 95, 4353-4369. https://doi.org/10.1007/s00170-017-1565-6
  20. Cao, R., Yu, J.Y., Chen, J.H. and Wang, P.C. (2013), "Feasibility of cold-metal-transfer welding magnesium AZ31 to galvanized mild steel", Welding Journal, 92, 274s-282s.
  21. Cao, R., Wang, T., Wang, C., Feng, Z., Lin, Q. and Chen, J.H. (2014), "Cold metal transfer welding-brazing of pure titanium TA2 to magnesium alloy AZ31B", J. Alloys Compounds, 605, 12-20. https://doi.org/10.1016/j.jallcom.2014.03.051
  22. Cao, R., Zhu, H., Wang, Q., Dong, C., Lin, Q. and Chen, J. (2016), "Effects of zinc coating on magnesium alloy-steel joints produced by cold metal transfer method", Mater. Sci. Tech., 32, 1805-1817. https://doi.org/10.1080/02670836.2016.1148107
  23. Chen, Y. and Nakata, K. (2010), "Effect of surface states of steel on microstructure and mechanical properties of lap joints of magnesium alloy and steel by friction stir welding", Sci. Technol. Weld. Join., 15(4), 293-298. https://doi.org/10.1179/136217109X12568132624325
  24. Chen, Y., Chen, S. and Li, L. (2009), "Effects of heat input on microstructure and mechanical property of Al/Ti joints by rectangular spot laser welding-brazing method", Int. J. Adv. Manuf. Technol., 44(3), 265-272. https://doi.org/10.1007/s00170-008-1837-2
  25. Chen, S., Zhang, M., Huang, J., Cui, C., Zhang, H. and Zhao, X. (2014), "Microstructures and mechanical property of laser butt welding of titanium alloy to stainless steel", Mater. Des., 53, 504-511. https://doi.org/10.1016/j.matdes.2013.07.044
  26. Chen, S., Yang, D., Yang, J., Huang, J. and Zhao, X. (2018), "Nanoscale structures of the interfacial reaction layers between molten aluminium and solid steel based on thermophysical simulations", J. Alloys Compounds, 739, 184-189. https://doi.org/10.1016/j.jallcom.2017.12.217
  27. Chen, S., Huo, X., Guo, C., Wei, X., Huang, J., Yang, J. and Lin, S. (2019), "Interfacial characteristics of Ti/Al joint by vaporizing foil actuator welding", J. Mater. Process. Technol., 263, 73-81. https://doi.org/10.1016/j.jmatprotec.2018.08.004
  28. DebRoy, T. and Bhadeshia, H. (2010), "Friction stir welding of dissimilar alloys-a perspective", Sci. Technol. Weld. Join., 15(4), 266-270. https://doi.org/10.1016/j.jallcom.2017.12.217
  29. Dharmendra, C., Rao, K., Wilden, J. and Reich, S. (2011), "Study on laser welding-brazing of zinc coated steel to aluminum alloy with a zinc based filler", Mater. Sci. Eng.: A, 528(3), 1497-1503. https://doi.org/10.1016/j.msea.2010.10.050
  30. Eustathopoulos, N., Nicholas, M.G. and Drevet, B. (1999), Wettability at high temperatures, Volume 3, Pergamon Press.
  31. Fotovvati, B., Wayne, S.F., Lewis, G. and Asadi, E. (2018), "A review on melt-pool characteristics in laser welding of metals", Adv. Mater. Sci. Eng., 2018, Article ID 4920718. https://doi.org/10.1155/2018/4920718
  32. Fukumoto, M., Tsubaki, M., Shimoda, Y. and Yasui, T. (2004), "Welding between ADC12 and SS400 by means of friction stirring", Weld. Res. Abroad, 50, 50-50.
  33. Gao, M., Zeng, X., Tan, B. and Feng, J. (2009), "Study of laser MIG hybrid welded AZ31 magnesium alloy", Sci. Tech. Weld. Join., 14, 274-281. https://doi.org/10.1179/136217109X406929
  34. Gao, M., Wang, Z., Yan, J. and Zeng, X. (2011), "Dissimilar Ti/Mg alloy butt welding by fibre laser with Mg filler wire-preliminary study", Sci. Technol. Weld. Join., 16(6), 488-496. https://doi.org/10.1155/2018/4920718
  35. Gao, M., Wang, Z.M., Li, X.Y. and Zeng, X.Y. (2012), "Laser Keyhole Welding of Dissimilar Ti-6Al-4V Titanium Alloy to AZ31B Magnesium Alloy", Metal. Mater. Transact. a-Phys. Metal. Mater. Sci, 43a(1), 163-172. https://doi.org/10.1007/s11661-011-0825-6
  36. Haboudou, A., Peyre, P., Vannes, A. and Peix, G. (2003), "Reduction of porosity content generated during Nd: YAG laser welding of A356 and AA5083 aluminium alloys", Mater. Sci. Eng.: A, 363(1), 40-52. https://doi.org/10.1016/S0921-5093(03)00637-3
  37. Illingworth, T., Golosnoy, I. and Clyne, T. (2007), "Modelling of transient liquid phase bonding in binary systems-A new parametric study", Mater. Sci. Eng.: A, 445, 493-500. https://doi.org/10.1016/j.msea.2006.09.090
  38. Jiangtao, X., Fusheng, Z., Jinglong, L. and Weidong, H. (2006), "Transient liquid phase bonding of magnesium alloy (AZ31b) and titanium alloy (Ti6Al4V) using aluminium interlayer", Rare Metal Mater. Eng., 35(10), 1677. https://doi.org/10.3321/j.issn:1002-185X.2006.10.040
  39. Joo, S. (2013), "Joining of dissimilar AZ31B magnesium alloy and SS400 mild steel by hybrid gas tungsten arc friction stir welding", Metal. Mater. Int., 19(6), 1251. https://doi.org/10.1007/s12540-013-6016-9
  40. Jun, Z. and Yong, W. (2019), "Effect of ultrasonic vibration field on tungsten inert gas welding of magnesium alloy and galvanized steel", Mater. Res. Exp., 6, 016519. https://doi.org/10.1088/2053-1591/aae4e9
  41. Kreimeyer, M., Wagner, F. and Vollertsen, F. (2005), "Laser processing of aluminum-titanium-tailored blanks", Optics Lasers Eng., 43(9), 1021-1035. https://doi.org/10.1016/j.optlaseng.2004.07.005
  42. Kulekci, M.K. (2008), "Magnesium and its alloys applications in automotive industry", Int. J Adv. Manuf. Technol., 39(9-10), 851-865. https://doi.org/10.1007/s00170-007-1279-2
  43. Lakshminarayanan, A., Saranarayanan, R., Srinivas, V.K. and Venkatraman, B. (2015), "Characteristics of friction welded AZ31B magnesium-commercial pure titanium dissimilar joints", J. Magnesium Alloys, 3(4), 315-321. https://doi.org/10.1016/j.jma.2015.11.004
  44. Laukant, H., Wallmann, C., Korte, M. and Glatzel, U. (2005), "Flux-less joining technique of aluminium with zinc-coated steel sheets by a dual-spot-laser beam", Adv. Mater. Res., 6-8, 163-170. https://doi.org/10.4028/www.scientific.net/AMR.6-8.163
  45. Le Guen, E., Fabbro, R., Carin, M., Coste, F. and Le Masson, P. (2011), "Analysis of hybrid Nd: Yag laser-MAG arc welding processes", Optics Laser Technol., 43(7), 1155-1166. https://doi.org/10.1016/j.optlastec.2011.03.002
  46. Li, L., Xia, H., Tan, C. and Ma, N. (2018), "Effect of groove shape on laser welding-brazing Al to steel", J. Mater. Process. Technol., 252, 573-581. https://doi.org/10.1016/j.jmatprotec.2017.10.025
  47. Liu, L. and Qi, X. (2009), "Effects of copper addition on microstructure and strength of the hybrid laser-TIG welded joints between magnesium alloy and mild steel", J. Mater. Sci., 44(21), 5725-5731. https://doi.org/10.1007/s10853-009-3797-9
  48. Liu, L. and Qi, X. (2010), "Strengthening effect of nickel and copper interlayers on hybrid laser-TIG welded joints between magnesium alloy and mild steel", Mater. Des., 31(8), 3960-3963. https://doi.org/10.1016/j.matdes.2010.03.039
  49. Liu, L. and Shan, C. (2009), "Study on laser-tungsten inert gas hybrid welding of dissimilar Mg alloy and steel with Ni as interlayer", Materialwissenschaft Und Werkstofftechnik, 40(10), 780-783. https://doi.org/10.1002/mawe.200900497
  50. Liu, L., Qi, X. and Wu, Z. (2010), "Microstructural characteristics of lap joint between magnesium alloy and mild steel with and without the addition of Sn element", Mater. Lett., 64(1), 89-92. https://doi.org/10.1016/j.matlet.2009.10.023
  51. Lutjering, G. and Williams, J.C. (2007), "Titanium", In: Engineering Materials and Processes, (2nd Edition), Springer, Berlin Heidelberg, pp. 1-14.
  52. MacDonald, W. and Eagar, T. (1992), "Transient liquid phase bonding", Annual Review of Materials Science, 22(1), 23-46. https://doi.org/10.1146/annurev.ms.22.080192.000323
  53. Manladan, S.M., Yusof, F., Ramesh, S. and Fadzil, M. (2016), "A review on resistance spot welding of magnesium alloys", Int. J. Adv. Manuf. Technol., 86(5), 1805-1825. https://doi.org/10.1007/s00170-015-8258-9
  54. Manladan, S., Yusof, F., Ramesh, S., Fadzil, M., Luo, Z. and Ao, S. (2017a), "A review on resistance spot welding of aluminum alloys", Int. J. Adv. Manuf. Technol., 90(1-4), 605-634. https://doi.org/10.1007/s00170-016-9225-9
  55. Manladan, S., Yusof, F., Ramesh, S., Zhang, Y., Luo, Z. and Ling, Z. (2017b), "Microstructure and mechanical properties of resistance spot welded in welding-brazing mode and resistance element welded magnesium alloy/austenitic stainless steel joints", J. Mater. Process. Technol., 250, 45-54. https://doi.org/10.1016/j.jmatprotec.2017.07.006
  56. Mann, V., Hofmann, K., Schaumberger, K., Weigert, T., Schuster, S., Hafenecker, J., Hubner, S., Lipinski, L., Roth, S. and Schmidt, M. (2018), "Influence of oscillation frequency and focal diameter on weld pool geometry and temperature field in laser beam welding of high strength steels", Procedia CIRP, 74, 470-474. https://doi.org/10.1016/j.procir.2018.08.148
  57. Mei, S., Gao, M., Yan, J., Zhang, C., Li, G. and Zeng, X. (2013), "Interface properties and thermodynamic analysis of laser-arc hybrid welded Al/steel joint", Sci. Technol. Weld. Join., 18(4), 293-300. https://doi.org/10.1179/1362171813Y.0000000106
  58. Miao, Y.G., Wu, B.T., Xu, X.F. and Han, D.F. (2014), "Effect of heat input on microstructure and mechanical properties of joints made by bypass-current MIG welding-brazing of magnesium alloy to galvanized steel", Acta Metallurgica Sinica-English Letters, 27(6), 1038-1045. https://doi.org/10.1007/s40195-014-0118-3
  59. Mordike, B. and Ebert, T. (2001), "Magnesium: properties-applications-potential", Mater. Sci. Eng.: A, 302(1), 37-45. https://doi.org/10.1016/S0921-5093(00)01351-4
  60. Nasiri, A.M. (2013), "Laser Brazing of Magnesium to Steel Sheet", Ph.D. Dissertation; University of Waterloo, Canada.
  61. Qi, X.-d. and Liu, L.-m. (2010), "Comparative study on characteristics of hybrid laser-TIG welded AZ61/Q235 lap joints with and without interlayers", J. Mater. Sci., 45(14), 3912-3920. https://doi.org/10.1007/s10853-010-4451-2
  62. Qi, X. and Liu, L. (2011), "Investigation on welding mechanism and interlayer selection of magnesium/steel lap joints", Weld. J, 90(1), 1S-7S.
  63. Qi, X. and Song, G. (2010), "Interfacial structure of the joints between magnesium alloy and mild steel with nickel as interlayer by hybrid laser-TIG welding", Mater. Des., 31(1), 605-609. https://doi.org/10.1016/j.matdes.2009.06.043
  64. Ren, D., Zhao, K., Pan, M., Chang, Y., Gang, S. and Zhao, D. (2017), "Ultrasonic spot welding of magnesium alloy to titanium alloy", Scripta Materialia, 126, 58-62. https://doi.org/10.1016/j.scriptamat.2016.08.003
  65. Sathiya, P., Mishra, M.K., Soundararajan, R. and Shanmugarajan, B. (2013), "Shielding gas effect on weld characteristics in arc-augmented laser welding process of super austenitic stainless steel", Optics Laser Technol., 45, 46-55. https://doi.org/10.1016/j.optlastec.2012.07.035
  66. Schutz, R. and Watkins, H. (1998), "Recent developments in titanium alloy application in the energy industry", Mater. Sci. Eng.: A, 243(1-2), 305-315. https://doi.org/10.1016/S0921-5093(97)00819-8
  67. Shenghai, Z., Yifu, S. and Huijuan, Q. (2013), "The technology and welding joint properties of hybrid lasertig welding on thick plate", Optics Laser Technol., 48, 381-388. https://doi.org/10.1016/j.optlastec.2012.11.014
  68. Sun, Z. and Ion, J. (1995), "Laser welding of dissimilar metal combinations", J. Mater. Sci., 30, 4205-4214. https://doi.org/10.1007/BF00361499
  69. Sun, J., Yan, Q., Li, Z. and Huang, J. (2016), "Effect of bevel angle on microstructure and mechanical property of Al/steel butt joint using laser welding-brazing method", Mater. Des., 90, 468-477. https://doi.org/10.1016/j.matdes.2015.10.154
  70. Takemoto, T., Kimura, S., Kawahito, Y., Nishikawa, H. and Katayama, S. (2009), "Fluxless joining of aluminium alloy to steel by laser irradiation method", Weld. Int., 23(5), 316-322. https://doi.org/10.1080/09507110802542643
  71. Tan, C., Chen, B., Meng, S., Zhang, K., Song, X., Zhou, L. and Feng, J. (2016a), "Microstructure and mechanical properties of laser welded-brazed Mg/Ti joints with AZ91 Mg based filler", Mater. Des., 99, 127-134. https://doi.org/10.1016/j.matdes.2016.03.073
  72. Tan, C., Song, X., Chen, B., Li, L. and Feng, J. (2016b), "Enhanced interfacial reaction and mechanical properties of laser welded-brazed Mg/Ti joints with Al element from filler", Mater. Lett., 167, 38-42. https://doi.org/10.1016/j.matlet.2015.12.119
  73. Tan, C., Lu, Q., Chen, B., Song, X., Li, L., Feng, J. and Wang, Y. (2017), "Influence of laser power on microstructure and mechanical properties of laser welded-brazed Mg to Ni coated Ti alloys", Optics Laser Technol., 89, 156-167. https://doi.org/10.1016/j.optlastec.2016.10.014
  74. Tan, C., Yang, J., Zhao, X., Zhang, K., Song, X., Chen, B., Li, L. and Feng, J. (2018a), "Influence of Ni coating on interfacial reactions and mechanical properties in laser welding-brazing of Mg/Ti butt joint", J. Alloys Compounds, 764, 186-201. https://doi.org/10.1016/j.jallcom.2018.06.039
  75. Tan, C., Zang, C., Zhao, X., Xia, H., Lu, Q., Song, X., Chen, B. and Wang, G. (2018b), "Influence of Nicoating thickness on laser lap welding-brazing of Mg/Ti", Optics Laser Technol., 108, 378-391. https://doi.org/10.1016/j.optlastec.2018.07.007
  76. Tanabe, H. and Watanabe, T. (2008), "Friction stir welding between CPTi and AZ31B magnesium alloy: effect of rotating tools on the welding strength of the joint", Weld. Int., 22(9), 588-596. https://doi.org/10.1080/09507110802410577
  77. Uematsu, Y., Kakiuchi, T., Tozaki, Y. and Kojin, H. (2012), "Comparative study of fatigue behaviour in dissimilar Al alloy/steel and Mg alloy/steel friction stir spot welds fabricated by scroll grooved tool without probe", Sci. Technol. Weld. Join., 17(5), 348-356. https://doi.org/10.1179/1362171812Y.0000000014
  78. Villars, P., Prince, A. and Okamoto, H. (1995), Handbook of Ternary Alloy Phase Diagrams, ASM International.
  79. Watanabe, T., Takayama, H., Yanagisawa, A. and Konuma, S. (2005), "Observation of the Solid State Welded Interface between Steel and Aluminum Alloy Using a Rotating Pin-Solid State Welding of Dissimilar Metals Using a Rotating Pin (Report 2)", Quarterly J. Japan Weld. Soc., 23(4), 603-607. https://doi.org/10.2207/qjjws.23.603
  80. Xiong, J., Li, Y., Li, R. and Yin, Z. (2018), "Influences of process parameters on surface roughness of multilayer single-pass thin-walled parts in GMAW-based additive manufacturing", J. Mater. Process. Technol., 252, 128-136. https://doi.org/10.1016/j.jmatprotec.2017.09.020
  81. Xu, C., Sheng, G., Deng, Y., Yuan, X. and Tang, K. (2014a), "Microstructure and mechanical properties of tungsten inert gas welded-brazed Mg/Ti lap joints", Sci. Technol. Weld. Join., 19(5), 443-450. https://doi.org/10.1179/1362171814Y.0000000208
  82. Xu, C., Sheng, G., Wang, H. and Yuan, X. (2014b), "Reinforcement of Mg/Ti joints using ultrasonic assisted tungsten inert gas welding-brazing technology", Sci. Technol. Weld. Join., 19(8), 703-707. https://doi.org/10.1179/1362171814Y.0000000245
  83. Xu, C., Sheng, G.M., Wang, H., Feng, K. and Yuan, X.J. (2016), "Tungsten Inert Gas Welding-Brazing of AZ31B Magnesium Alloy to TC4 Titanium Alloy", J. Mater. Sci. Technol., 32(2), 167-171. https://doi.org/10.1016/j.jmst.2015.12.003
  84. Xu, C., Sheng, G., Sun, Y., Yuan, X. and Jiao, Y. (2017), "Microstructure and mechanical properties of high-energy shot-peened Mg/Ti weldments", Sci. Technol. Weld. Join., 23(1), 1-7. https://doi.org/10.1080/13621718.2017.1325960
  85. Yamamoto, A., Terashita, M. and Tsubakino, H. (2007), "Textures in AMCa602 and AZ31B magnesium alloys formed by wavy bend pressing", J. Japan Inst. Light Metals, 57, 99-104. https://doi.org/10.2464/jilm.57.99
  86. Yue, T., Li, T. and Lin, X. (2010), "Microstructure and phase evolution in laser cladding of Ni/Cu/Al multilayer on magnesium substrates", Metallurg. Mater. Transact. A, 41(1), 212. https://doi.org/10.1007/s11661-009-0065-1
  87. Zang, C., Liu, J., Tan, C., Zhang, K., Song, X., Chen, B., Li, L. and Feng, J. (2018), "Laser conduction welding characteristics of dissimilar metals Mg/Ti with Al interlayer", J. Manuf. Process., 32, 595-605. https://doi.org/10.1016/j.jmapro.2018.03.019
  88. Zhang, M., Chen, G., Zhang, Y. and Wu, K. (2013), "Research on microstructure and mechanical properties of laser keyhole welding-brazing of automotive galvanized steel to aluminum alloy", Mater. Des., 45, 24-30. https://doi.org/10.1016/j.matdes.2012.09.023
  89. Zhang, K., Liu, J., Tan, C., Wang, G., Song, X., Chen, B., Li, L. and Feng, J. (2018a), "Dissimilar joining of AZ31B Mg alloy to Ni-coated Ti-6Al-4V by laser heat-conduction welding process", J. Manuf. Process., 34, Part A, 148-157. https://doi.org/10.1016/j.jmapro.2018.05.037
  90. Zhang, Z., Tan, C., Wang, G., Chen, B., Song, X., Zhao, H., Li, L. and Feng, J. (2018b), "Laser Welding-Brazing of Immiscible AZ31B Mg and Ti-6Al-4V Alloys Using an Electrodeposited Cu Interlayer", J. Mater. Eng. Perform., 27(3), 1414-1426. https://doi.org/10.1007/s11665-018-3196-y
  91. Zhang, Z., Tan, C., Zhao, X., Chen, B., Song, X. and Zhao, H. (2018c), "Influence of Cu coating thickness on interfacial reactions in laser welding-brazing of Mg to Ti", J. Mater. Process. Technol., 261, 61-73. https://doi.org/10.1016/j.jmatprotec.2018.06.009
  92. Zhao, D., Zhao, K., Ren, D. and Guo, X. (2017), "Ultrasonic Welding of Magnesium-Titanium Dissimilar Metals: A Study on Influences of Welding Parameters on Mechanical Property by Experimentation and Artificial Neural Network", J. Manuf. Sci. Eng., 139(3), 031019. https://doi.org/10.1016/10.1115/1.4035539

피인용 문헌

  1. Dissimilar Non-Ferrous Metal Welding: An Insight on Experimental and Numerical Analysis vol.11, pp.9, 2019, https://doi.org/10.3390/met11091486