DOI QR코드

DOI QR Code

한국 해안에서 유동유발진동 현상을 이용한 조류에너지 발전기술의 이론적 연간 발전량 산정연구

Assessment of Theoretical Annual Energy Production in the Coast of South Korea Using Tidal Current Energy Converters Utilizing Flow Induced Vibration

  • 김은수 (부산대학교 조선해양공학과) ;
  • 오광명 (인제대학교 디자인엔지니어링학과) ;
  • 박홍래 (대우조선해양 선박해양연구소)
  • Kim, Eun Soo (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Oh, Kwang Myung (Department of Design Engineering, Inje University) ;
  • Park, Hongrae (Daewoo Shipbuilding and Marine Engineering, Research Center of Ship and Offshore Structure)
  • 투고 : 2019.01.04
  • 심사 : 2019.02.11
  • 발행 : 2019.03.29

초록

한국정부는 재생에너지를 이용한 발전량 비중을 2030년까지 총 발전량의 20%까지 높이겠다는 목표를 제시하였다. 풍부한 해양 신재생에너지 자원은 한국정부가 이 목표를 달성하는데 중요한 역할을 할 수 있을 것이다. 이 논문은 1.0 m/s의 낮은 유속에서도 높은 효율을 달성할 수 있는 유동유발진동 현상을 이용한 조류에너지 발전기술을 소개하고 한국 7개 해안의 평균유속을 바탕으로 높은 효율을 달성할 수 있는 유동유발진동 발전기의 최적 설계를 제안하고자 한다. 또한, 이를 바탕으로 각 해안에서 발전할 수 있는 이론적 잠재량을 산정하고자 한다. 유동유발 발전기술을 이용한 연간 이론적 최대발전량은 221.77 TWh로 예측되었고 이는 2013년 한국의 총 전력소비량의 42.3%에 해당한다. 본 연구결과는 유동유발진동을 이용한 발전기술을 이용한 조류발전기술이 한국 정부가 제시한 목표를 달성하는데 중요한 역할을 할 수 있음을 보여준다.

The Korean government is aiming to produce 20% of the electricity using renewable energy sources by 2030. Ocean renewable energy sources which are abundant in South Korea can do an important role to achieve the goal. This paper introduces a tidal current energy converter utilizing flow induced vibrations which can efficiently work even in the currents slower than 1.0m/s and suggests optimal designs of the tidal energy converter based on speeds of the tidal currents in seven different coastal regions in South Korea. Moreover, the theoretical annual energy production by the tidal converter is estimated at theses costal areas. The total amount of the annual energy production by the tidal energy converter is predicted as 221.77 TWh which is equivalent to 42.3% of the electric consumption of South Korea in 2013. The result shows that the tidal current energy converter can be an important role to achieve the goal of the Korean government.

키워드

참고문헌

  1. Byun, D. S., Hart, E. D., Jeong, W. J., 2013, Tidal current energy resource off the south and west coasts of Korea: Preliminary observation-derived estimates", Energies, 6, 566-578. https://doi.org/10.3390/en6020566
  2. Bernitsas MM, Ben-Simon Y, Raghavan K, Garcia EMH., 2006, The VIVACE converter: model tests at high damping and Reynolds number around 105,000, Journal of Offshore Mechanics and Arctic Engineering, Trans ASME 131: 011102.
  3. Bernitsas MM, Raghavan K., Fluid motion energy converter. United States Patent and Trademark Office, Patent# 7,493,759 B2. Issued on February 24; 2009.
  4. Bernitsas MM, Raghavan K., Enhancement of vortex induced forces and motion through surface roughness control." United States Patent and Trademark Office.Patent# 8,042,232 B2. Issued on November 1; 2011.
  5. Kim E.S., Bernitsas MM, Kumar AR., 2013, Multi-cylinder flow induced motions: Enhancement by passive turbulence control at 28,000 < Re < 120,000." Journal of Offshore Mechanics and Arctic Engineering, Trans ASME 135:021802. https://doi.org/10.1115/1.4007052
  6. Kim E.S., Bernitsas M.M., 2016, Performance prediction of horizontal hydrokinetic energy converter using multiple-cylinder synergy in flow induced motion, Applied Energy, 170, 92-100 https://doi.org/10.1016/j.apenergy.2016.02.116
  7. Yuce MI, Muratoglu A., 2015, "Hydrokinetic energy conversion systems: a technology status review." Renewable and Sustainable Energy Reviews, 43, 72-82. https://doi.org/10.1016/j.rser.2014.10.037
  8. Liao , J.C., Beal, D.N., Lauder, G.V., Triantafyllou, M.S., 2003, Fish exploiting vortices decrease muscle activity, Science 302, 1566-1569 https://doi.org/10.1126/science.1088295
  9. Jo, C. H., Lee, K. H., Hwang, S. J., 2015, Tidal current energy resource assessment technique and procedure applied in western coastal region, South Korea, Journal of Energy and Power Engineering, 9, 358-366.
  10. Jo, C. H., Lee, K. H., Cho, B. K., Hwang, S. J., 2016, Resource assessment of tidal current energy using API in Korea", Journal of the Korean Solar Energy Society, Vol. 36, No. 1, 75-81. https://doi.org/10.7836/kses.2016.36.1.075
  11. Jo, C. H., Lee, K. H., Cho, B. K., Hwang, S. J., 2016, Tidal current resource assessment using Simulation of water circulation in Korea, New & Renewable Energy, 12(2), 71-76. https://doi.org/10.7849/ksnre.2016.10.12.S2.71
  12. Sun, H., Ma, C., Kim, E.S., Nowakowski, G., Mauer, E., Bernitsas, M.M., 2017, Hydrokinetic energy conversion by two rough tandem-cylinders in flow induced motions: Effect of spacing and stiffness, 107, 61-80. https://doi.org/10.1016/j.renene.2017.01.043
  13. Fox,T.A. & West, G.S. 1990, On the use of end plates with circular cylinders, Experiments in Fluids 9, 237-239. https://doi.org/10.1007/BF00190426
  14. Lee, T. and Budwig R., 1991. A study of the effect of aspect ratio on vortex shedding behind circular cylinders, Journal of Physics of Fluids 3,309-315. https://doi.org/10.1063/1.858140
  15. 2016 New and Renewable Energy White Paper, Korea Ministry of Trade, Industry and Energy and Korean Energy Agency, 56-57