DOI QR코드

DOI QR Code

Distribution Characteristics of Hazardous Heavy Metals in Ginseng and Wood-cultivated Ginseng

인삼 및 산양삼의 부위별 유해중금속 분포 특성

  • Yang, Seung-Hyun (Department of Bio-Environmental Chemistry, College of Agriculture and Food Sciences, Wonkwang University) ;
  • Lee, Tae-Woo (Department of Bio-Environmental Chemistry, College of Agriculture and Food Sciences, Wonkwang University) ;
  • Lee, Jae-In (Department of Bio-Environmental Chemistry, College of Agriculture and Food Sciences, Wonkwang University) ;
  • Choi, Hoon (Department of Bio-Environmental Chemistry, College of Agriculture and Food Sciences, Wonkwang University)
  • 양승현 (원광대학교 농식품융합대학 생물환경화학과) ;
  • 이태우 (원광대학교 농식품융합대학 생물환경화학과) ;
  • 이재인 (원광대학교 농식품융합대학 생물환경화학과) ;
  • 최훈 (원광대학교 농식품융합대학 생물환경화학과)
  • Received : 2019.05.13
  • Accepted : 2019.07.03
  • Published : 2019.08.30

Abstract

The present study was carried out to identify the distribution characteristics of heavy metals in ginseng and wood-cultivated ginseng reduction of dietary exposure. Samples of ginseng and wood-cultivated ginseng were collected from 14 and 5 regions across Korea, respectively. Lead (Pb), cadmium (Cd) and arsenic (Ar) were detected by ICP-MS after microwave digestion, whereas aluminum (Al) was determined using ICP. Cultivated ginseng peels were 16.2% of whole root, while the peels and fine roots amounted to 21.8% and 16.8% of whole wood-cultivated ginseng, respectively. Taking into account the weight and concentration of the heavy metals by root part, their distribution ratios were calculated and compared. The cultivated ginseng peels contained 40.3% Pb, 25.9% Cd, 47.6% As, and 89.9% Al. Meanwhile, heavy metals consisting of 27.2% Pb, 28.2% Cd, 48.3% As, and 56.8% Al were distributed in the peels of the wood-cultivated ginseng. There was no significant difference between the peels and fine roots of the wood-cultivated ginseng with respect to the distribution proportion of heavy metals, except for Al. These results indicate that the level of dietary exposure to heavy metals could be reduced by peeling ginseng and wood-cultivated ginseng prior to consumption.

본 연구는 인삼과 산양삼의 부위별 중금속 분포양상을 조사하여 중금속 식이노출 저감화 방안을 모색하고자 하였다. 인삼과 산양삼은 지역별 배분을 통해 각각 14개 지역 및 5개 지역에서 시료를 채취하였으며, 각 부위별 중량 및 중금속 함량을 분석하였다. 중금속 분석을 위해 microwave 장치를 이용해 전처리한 후 납, 카드뮴 및 비소는 ICP-MS로 측정하고 알루미늄은 ICP를 이용한 분석법을 확립하였다. 인삼의 겉껍질은 전체의 16.2% 중량비를 차지하였으며, 산양삼의 겉껍질 및 잔뿌리는 각각 전체의 21.8%, 16.8%의 중량비를 차지하였다. 각 부위별 중량비와 중금속 농도를 고려하여 각 부위별 중금속 분포도를 산출하였다. 인삼 및 산양삼의 겉껍질은 전체에 차지하는 중량비에 비해 높은 중금속 함유량을 보이고 있었으며, 인삼의 경우 납의 40.3%, 카드뮴 25.9%, 비소 47.6%, 알루미늄 89.9%가 겉껍질에 잔존하고 있었으며 산양삼의 경우 납 27.2%, 카드뮴 28.2%, 비소 48.3%, 알루미늄 56.8%가 겉껍질에 존재하였다. 알루미늄을 제외하고 산양삼의 잔뿌리내 중금속 분포량은 겉껍질과 유의적 차이가 없었다. 따라서, 인삼 및 산양삼의 겉껍질을 벗기고 섭취한다면 중금속 식이노출량을 크게 줄일 수 있음을 확인하였다.

Keywords

References

  1. Hu, S.J., Kim, M., Park, S.K., Lee, J.O.: Heavy metal contents in ginseng and ginseng products. Korean J. Food Sci. Technol., 37(3), 329-333 (2005).
  2. Alirzayeva, E.G., Shirvani, T.S., Yazici, M.A., Alverdiyeva, S.M., Shukurov, E.S., Ozturk, L., Ali-Zade, V.M., Cakmak, I.: Heavy metal accumulation in Artemisia and foliaceous lichen species from the Azerbaijan flora. Forest snow and landscape research., 80(3), 339-348 (2006).
  3. Holmgren, G.G., Meyer, S.M., Chaney, R.L., Daniels, R.B.: Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America. J. Environ. Qual., 22, 335-348 (1993). https://doi.org/10.2134/jeq1993.00472425002200020015x
  4. Shim, J.Y., Oh, H.S., Jang, M.R., Lee, Y.A., Lee, R.K., Kim, M.A., Lee, H.J., Lee, S.M., Cho, T.Y.: Monitoring of lead and cadmium contents of vegetables in Korea. J. Food Hyg. Safo, 25(4), 395-401 (2010).
  5. Chung, S.Y., Kim, M.H., Sho, Y.S., Won, K.P., Hong, M.K.: Trace metal contents in vegetables and their safety evaluations. J. Korean Soc. Food Sci. Nutr., 30(1), 32-26 (2001).
  6. Kim, A.J., Han, M.R., Joung, K.H., Cho, J.C., Park, W.J., Han, C.W., Chang, K.H.: Physiological evaluation of Korea Ginseng, Deoduk and Doragi pickles. Korean J. Food Nutr., 21(4), 443-447 (2008).
  7. Ministry of Food and Drug Safety (MFDS): Food Code, Ministry of Food and Drug Safety, Cheongju, Korea (2019).
  8. Bell, R.M.: Higher plant accumulation of organic pollutants from soils, EPA/600/R-92/138. Cincinnati: United States Environmental Protection Agency, Washington DC, USA (1992).
  9. Singh, S., Zacharias, M., Kalpana, S., Mishra, S.: Heavy metals accumulation and distribution pattern in different vegetable crops. J. Environ. Chem. Ecotoxicol., 4(10), 170-177 (2012).
  10. Soudek, P., Kotyza, J., Lenikusova, I., Petrova, S., Benesova, D., Vanek, T.: Accumulation of heavy metals in hydroponically cultivated garlic (Allium sativum L.), onion (Allium cepa L.), leek (Allium porrum L.) and chive (Allium schoenoprasum L.). J. Food Agri. Environ., 7, 761-769 (2009).
  11. Turkekul, I., Elmastas, M., Tuzen, M.: Determination of iron, copper, manganaese, zinc, lead, and cadmium in mushroom samples from Tokat, Turkey. Food Chem., 84, 389-392 (2004). https://doi.org/10.1016/S0308-8146(03)00245-0
  12. Blanusa, M., Kucak, A., Varnai, V.M., Saric M.M.: Uptake of cadmium, copper, iron, manganes, and zinc in mushrooms( Boletaceae) from Croatian forest soil. J. AOAC Int., 84, 1964-1971 (2001). https://doi.org/10.1093/jaoac/84.6.1964
  13. Kim, H.Y., Kim, J.I., Kim, J.C., Park, J.E., Lee, K.J., Kim, S.I., Jang, Y.M.: Survey of heavy metal contents of circulating agricultural products in Korea. Korean J. Food Sci. Technol., 41, 238-244 (2009).
  14. Cho, M.J., Choi, H., Kim, H.J., Youn, H.J.: Monitoring and risk assessment of heavy metals in perennial root vegetables. Korean J. Environ. Agric., 35(1), 55-61 (2016). https://doi.org/10.5338/KJEA.2016.35.1.07
  15. Lee, H.R., Riu, M.J., Park, H.W., Na, Y.L., Song, H.H., Keum, Y.S., Zhu, Y., Kim, J.H.: Establishment of analytical method for fenhexamid residue in Korean cabbage, apple, mandarin and green pepper. Korean J. Pesti. Sci., 13(4), 223-231 (2009).
  16. World Health Organization (WHO): Specifications for the identify and purity of food additives and their toxicological evaluation (Tenth report of the Joint FAO/WHO Expert Committee on Food Additives), pp. 15. WHO Technical Report Series, No. 373, Geneva, Switzerland (1967).
  17. World Health Organization (WHO): Evaluation of certain food additives and contaminants (Fifty-third report of the Joint FAO/WHO Expert Committee on Food Additives), pp. 81-82, WHO Technical Report Series, No. 896, Geneva, Switzerland (2000).
  18. Joint FAO/WHO Expert Committee on Food Additives (JECFA): Summary and conclusion of seventy-third meeting (JECFA/73/SC), pp. 12, Geneva, Switzerland (2010).
  19. Joint FAO/WHO Expert Committee on Food Additives (JECFA): Summary and conclusions of seventy-fourth meeting (JECFA/74/SC). Geneva, Switzerland (2011).
  20. Patrick, J.G., William, R.M., John, C.: FDA elemental analysis manual: section 4.7 Inductively coupled plasma-mass spectrometric determination of arsenic, cadmium, chromium, lead, mercury, and other elements in food using microwave assisted digestion, pp. 14, U.S. Food and Drug Administration, Washington DC, USA (2015).
  21. AOAC International: AOAC guidelines for single laboratory validation of chemical methods for dietary supplements and botanicals, pp. 19, Association of Official Analytical Chemists International (2002).
  22. Kim, J.Y., Kim, B.W., Kwon, K.R.: A study on heavy metal contents in cultivated wild ginseng from Korea and China. J. Pharmacopuncture, 10(1), 67-77 (2007).
  23. An, J.M., Hong, K.S., Kim, S.Y., Kim, J.H., Yu, K.E., Kim, H.Y., Park, H.D., Lee, J.H., Kim, D.H.: Risk assessment aluminum levels of circulating agricultural products in Korea. Korean J. Environ. Agric., 34(4), 336-344 (2015). https://doi.org/10.5338/KJEA.2015.34.4.41
  24. European Food Safety Authority (EFSA): Opinion on safety of aluminium from dietary intake. The EFSA J., 754, 2-88 (2008).