References
- Nakamoto RK, Baylis Scanlon JA, Al-Shawi MK. 2008. The rotary mechanism of the ATP synthase. Arch. Biochem. Biophys. 476: 43-50. https://doi.org/10.1016/j.abb.2008.05.004
- von Ballmoos C, Wiedenmann A, Dimroth P. 2009. Essentials for ATP synthesis by F1Fo-ATP synthases. Annu. Rev. Biochem. 78: 649-672. https://doi.org/10.1146/annurev.biochem.78.081307.104803
- Hicks DB, Liu J , Fujisawa M, Krulwich TA. 2010. F1Fo-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. Biochim. Biophys. Acta 1797: 1362-1377. https://doi.org/10.1016/j.bbabio.2010.02.028
- Kulish O, Wright AD, Terentjev EM. 2016. F1 rotary motor of ATP synthase is driven by the torsionally-asymmetric drive shaft. Sci. Rep. 6: 28180. https://doi.org/10.1038/srep28180
- Nesci S, Trombetti F, Ventrella V, Pagliarani A. 2015. Opposite rotation directions in the synthesis and hydrolysis of ATP by the ATP synthase: hints from a subunit asymmetry. J. Membr. Biol. 248: 163-169. https://doi.org/10.1007/s00232-014-9760-y
- Capaldi RA, Aggeler R. 2002. Mechanism of the F1Fo-type ATP synthase, a biological rotary motor. Trends Biochem. Sci. 27: 154-160. https://doi.org/10.1016/S0968-0004(01)02051-5
- Neupane P, Bhuju S, Thapa N, Bhattarai HK. 2019. ATP Synthase: structure, function and inhibition. Biomol. Concepts 10: 1-10. https://doi.org/10.1515/bmc-2019-0001
- Gay NJ, Walker JE. 1981. The atp operon: nucleotide sequence of the region encoding the alpha-subunit of Escherichia coli ATP-synthase. Nucleic Acids Res. 9: 2187-2194. https://doi.org/10.1093/nar/9.9.2187
- Liu J, Hicks DB, Krulwich TA. 2013. Roles of AtpI and two YidC-type proteins from alkaliphilic Bacillus pseudofirmus OF4 in ATP synthase assembly and nonfermentative growth. J. Bacteriol. 195: 220-230. https://doi.org/10.1128/JB.01493-12
- Gay NJ. 1984. Construction and characterization of an Escherichia coli strain with a uncI mutation. J. Bacteriol. 158: 820-825. https://doi.org/10.1128/JB.158.3.820-825.1984
- Suzuki T, Ozaki Y, Sone N, Feniouk BA, Yoshida M. 2007. The product of uncI gene in F1Fo-ATP synthase operon plays a chaperone-like role to assist c-ring assembly. Proc. Natl. Acad. Sci. USA 104: 20776-20781. https://doi.org/10.1073/pnas.0708075105
- Ozaki Y, Suzuki T, Kuruma Y, Ueda T, Yoshida M. 2008. UncI protein can mediate ring-assembly of c-subunits of F1Fo-ATP synthase in vitro. Biochem. Biophys. Res. Commun. 367: 663-666. https://doi.org/10.1016/j.bbrc.2007.12.170
- Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR. 2002. The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J. Bacteriol. 184: 3909-3916. https://doi.org/10.1128/JB.184.14.3909-3916.2002
- Hara KY, Kondo A. 2015. ATP regulation in bioproduction. Microb. Cell Fact. 14: 198. https://doi.org/10.1186/s12934-015-0390-6
- Zhou J, Liu L, Shi Z, Du G, Chen J. 2009. ATP in current biotechnology: regulation, applications and perspectives. Biotechnol. Adv. 27: 94-101. https://doi.org/10.1016/j.biotechadv.2008.10.005
- Causey TB, Shanmugam KT, Yomano LP, Ingram LO. 2004. Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proc. Natl. Acad. Sci. USA 101: 2235-2240. https://doi.org/10.1073/pnas.0308171100
- Causey TB, Zhou S, Shanmugam KT, Ingram LO. 2003. Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proc. Natl. Acad. Sci. USA 100: 825-832. https://doi.org/10.1073/pnas.0337684100
-
Wada M, Narita K, Yokota A. 2007. Alanine production in an
$H^+$ -ATPase- and lactate dehydrogenase-defective mutant of Escherichia coli expressing alanine dehydrogenase. Appl. Microbiol. Biotechnol. 76: 819-825. https://doi.org/10.1007/s00253-007-1065-y -
Koch-Koerfges A, Kabus A, Ochrombel I, Marin K, Bott M. 2012. Physiology and global gene expression of a Corynebacterium glutamicum
${\Delta}F1Fo$ -ATP synthase mutant devoid of oxidative phosphorylation. Biochim. Biophys. Acta 1817: 370-380. https://doi.org/10.1016/j.bbabio.2011.10.006 -
Wada M, Hijikata N, Aoki R, Takesue N, Yokota A. 2008. Enhanced valine production in Corynebacterium glutamicum with defective
$H^+$ -ATPase and C-terminal truncated acetohydroxyacid synthase. Biosci. Biotechnol. Biochem. 72: 2959-2965. https://doi.org/10.1271/bbb.80434 - Barriuso-Iglesias M, Barreiro C, Sola-Landa A, Martin JF. 2013. Transcriptional control of the F1Fo-ATP synthase operon of Corynebacterium glutamicum: SigmaH factor binds to its promoter and regulates its expression at different pH values. Microb. Biotechnol. 6: 178-188. https://doi.org/10.1111/1751-7915.12022
- Mustafi N, Grunberger A, Kohlheyer D, Bott M, Frunzke J. 2012. The development and application of a single-cell biosensor for the detection of l-methionine and branchedchain amino acids. Metab. Eng. 14: 449-457. https://doi.org/10.1016/j.ymben.2012.02.002
- Okibe N, Suzuki N, Inui M, Yukawa H. 2011. Efficient markerless gene replacement in Corynebacterium glutamicum using a new temperature-sensitive plasmid. J. Microbiol. Methods 85: 155-163. https://doi.org/10.1016/j.mimet.2011.02.012
- Robert X, Gouet P. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42: W320-324. https://doi.org/10.1093/nar/gku316
- Tusnady GE, Simon I. 2010. Topology prediction of helical transmembrane proteins: how far have we reached? Curr. Protein Pept. Sci. 11: 550-561. https://doi.org/10.2174/138920310794109184
-
Sawada K, Kato Y, Imai K, Li L, Wada M, Matsushita K, et al. 2012. Mechanism of increased respiration in an
$H^+$ -ATPase-defective mutant of Corynebacterium glutamicum. J. Biosci. Bioeng. 113: 467-473. https://doi.org/10.1016/j.jbiosc.2011.11.021 - Lee IY, Kim MK, Park YH, Lee SY. 1996. Regulatory effects of cellular nicotinamide nucleotides and enzyme activities on poly(3-hydroxybutyrate) synthesis in recombinant Escherichia coli. Biotechnol. Bioeng. 52: 707-712. https://doi.org/10.1002/(SICI)1097-0290(19961220)52:6<707::AID-BIT8>3.0.CO;2-S
- Li ZJ, Cai L, Wu Q, Chen GQ. 2009. Overexpression of NAD kinase in recombinant Escherichia coli harboring the phbCAB operon improves poly(3-hydroxybutyrate) production. Appl. Microbiol. Biotechnol. 83: 939-947. https://doi.org/10.1007/s00253-009-1943-6
- Shi F, Huan X, Wang X, Ning J. 2012. Overexpression of NAD kinases improves the L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Enzyme Microb. Technol. 51: 73-80. https://doi.org/10.1016/j.enzmictec.2012.04.003
- Wang X, Peng F, Dong G, Sun Y, Dai X, Yang Y, et al. 2018. Identification and validation of appropriate reference genes for qRT-PCR analysis in Corynebacterium glutamicum. FEMS Microbiol. Lett. 365(8): doi: 10.1093/femsle/fny030.
- Wen S, Chen X, Xu F, Sun H. 2016. Validation of reference genes for real-time quantitative PCR (qPCR) analysis of Avibacterium paragallinarum. PLoS One 11: e0167736. https://doi.org/10.1371/journal.pone.0167736
- Sihto HM, Tasara T, Stephan R, Johler S. 2014. Validation of reference genes for normalization of qPCR mRNA expression levels in Staphylococcus aureus exposed to osmotic and lactic acid stress conditions encountered during food production and preservation. FEMS Microbiol. Lett. 356: 134-140. https://doi.org/10.1111/1574-6968.12491
-
Xu N, Zheng Y, Wang X, Krulwich TA, Ma Y, Liu J. 2018. The Lysine 299 residue endows the multisubunit Mrp1 antiporter with dominant roles in
$Na^+$ resistance and pH homeostasis in Corynebacterium glutamicum. Appl. Environ. Microbiol. 84: e00110-118. - Liu J, Fujisawa M, Hicks DB, Krulwich TA. 2009. Characterization of the functionally critical AXAXAXA and PXXEXXP motifs of the ATP synthase c-subunit from an Alkaliphilic Bacillus. J. Biol. Chem. 284: 8714-8725. https://doi.org/10.1074/jbc.M808738200
- Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA. 1979. An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem. 100: 95-97. https://doi.org/10.1016/0003-2697(79)90115-5
- Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, et al. 2003. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J. Biotechnol. 104: 5-25. https://doi.org/10.1016/S0168-1656(03)00154-8
- Reinscheid DJ, Schnicke S, Rittmann D, Zahnow U, Sahm H, Eikmanns BJ. 1999. Cloning, sequence analysis, expression and inactivation of the Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase and acetate kinase. Microbiology 145 (Pt 2): 503-513. https://doi.org/10.1099/13500872-145-2-503
- Yokota A, Terasawa Y, Takaoka N, Shimizu H, Tomita F. 1994. Pyruvic acid production by an F1-ATPase-defective mutant of Escherichia coli W1485lip2. Biosci. Biotechnol. Biochem. 58: 2164-2167. https://doi.org/10.1271/bbb.58.2164
- Liu LM, Li Y, Du GC, Chen J. 2006. Increasing glycolytic flux in Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation. J. Appl. Microbiol. 100: 1043-1053. https://doi.org/10.1111/j.1365-2672.2006.02871.x
-
Aoki R, Wada M, Takesue N, Tanaka K, Yokota A. 2005. Enhanced glutamic acid production by a
$H^+$ -ATPase-defective mutant of Corynebacterium glutamicum. Biosci. Biotechnol. Biochem. 69: 1466-1472. https://doi.org/10.1271/bbb.69.1466 - Fillingame RH, Angevine CM, Dmitriev OY. 2003. Mechanics of coupling proton movements to c-ring rotation in ATP synthase. FEBS Lett. 555: 29-34. https://doi.org/10.1016/S0014-5793(03)01101-3
- Sekiya M, Nakamoto RK, Al-Shawi MK, Nakanishi-Matsui M, Futai M. 2009. Temperature dependence of single molecule rotation of the Escherichia coli ATP synthase F1 sector reveals the importance of gamma-beta subunit interactions in the catalytic dwell. J. Biol. Chem. 284: 22401-22410. https://doi.org/10.1074/jbc.M109.009019
- Becker J, Zelder O, Hafner S, Schroder H, Wittmann C. 2011. From zero to hero--design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab. Eng. 13: 159-168. https://doi.org/10.1016/j.ymben.2011.01.003
- Park SH, Kim HU, Kim TY, Park JS, Kim SS, Lee SY. 2014. Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nat. Commun. 5: 4618. https://doi.org/10.1038/ncomms5618
- Jojima T, Fujii M, Mori E, Inui M, Yukawa H. 2010. Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation. Appl. Microbiol. Biotechnol. 87: 159-165. https://doi.org/10.1007/s00253-010-2493-7
- Bartek T, Blombach B, Zonnchen E, Makus P, Lang S, Eikmanns BJ, et al. 2010. Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum. Biotechnol. Prog. 26: 361-371.