DOI QR코드

DOI QR Code

Deletion of cg1360 Affects ATP Synthase Function and Enhances Production of L-Valine in Corynebacterium glutamicum

  • Wang, Xiaochen (University of Science and Technology of China) ;
  • Yang, Hongyu (Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences) ;
  • Zhou, Wei (Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences) ;
  • Liu, Jun (Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences) ;
  • Xu, Ning (Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences)
  • Received : 2019.04.12
  • Accepted : 2019.07.25
  • Published : 2019.08.28

Abstract

Bacterial ATP synthases drive ATP synthesis by a rotary mechanism, and play a vital role in physiology and cell metabolism. Corynebacterium glutamicum is well known as an industrial workhorse for amino acid production, and its ATP synthase operon contains eight structural genes and two adjacent genes, cg1360 and cg1361. So far, the physiological functions of Cg1360 (GenBank CAF19908) and Cg1361 (GenBank CAF19909) remain unclear. Here, we showed that Cg1360 was a hydrophobic protein with four transmembrane helices (TMHs), while no TMH was found in Cg1361. Deletion of cg1360, but not cg1361, led to significantly reduced cell growth using glucose and acetic acid as carbon sources, reduced F1 portions in the membrane, reduced ATP-driven proton-pumping activity and ATPase activity, suggesting that Cg1360 plays an important role in ATP synthase function. The intracellular ATP concentration in the ${\Delta}cg1360$ mutant was decreased to 72% of the wild type, while the NADH and NADPH levels in the ${\Delta}cg1360$ mutant were increased by 29% and 26%, respectively. However, the ${\Delta}cg1361$ mutant exhibited comparable intracellular ATP, NADH and NADPH levels with the wild-type strain. Moreover, the effect of cg1360 deletion on L-valine production was examined in the L-valine-producing V-10 strain. The final production of L-valine in the $V-10-{\Delta}cg1360$ mutant reached $9.2{\pm}0.3g/l$ in shake flasks, which was 14% higher than that of the V-10 strain. Thus, Cg1360 can be used as an effective engineering target by altering energy metabolism for the enhancement of amino acid production in C. glutamicum.

Keywords

References

  1. Nakamoto RK, Baylis Scanlon JA, Al-Shawi MK. 2008. The rotary mechanism of the ATP synthase. Arch. Biochem. Biophys. 476: 43-50. https://doi.org/10.1016/j.abb.2008.05.004
  2. von Ballmoos C, Wiedenmann A, Dimroth P. 2009. Essentials for ATP synthesis by F1Fo-ATP synthases. Annu. Rev. Biochem. 78: 649-672. https://doi.org/10.1146/annurev.biochem.78.081307.104803
  3. Hicks DB, Liu J , Fujisawa M, Krulwich TA. 2010. F1Fo-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. Biochim. Biophys. Acta 1797: 1362-1377. https://doi.org/10.1016/j.bbabio.2010.02.028
  4. Kulish O, Wright AD, Terentjev EM. 2016. F1 rotary motor of ATP synthase is driven by the torsionally-asymmetric drive shaft. Sci. Rep. 6: 28180. https://doi.org/10.1038/srep28180
  5. Nesci S, Trombetti F, Ventrella V, Pagliarani A. 2015. Opposite rotation directions in the synthesis and hydrolysis of ATP by the ATP synthase: hints from a subunit asymmetry. J. Membr. Biol. 248: 163-169. https://doi.org/10.1007/s00232-014-9760-y
  6. Capaldi RA, Aggeler R. 2002. Mechanism of the F1Fo-type ATP synthase, a biological rotary motor. Trends Biochem. Sci. 27: 154-160. https://doi.org/10.1016/S0968-0004(01)02051-5
  7. Neupane P, Bhuju S, Thapa N, Bhattarai HK. 2019. ATP Synthase: structure, function and inhibition. Biomol. Concepts 10: 1-10. https://doi.org/10.1515/bmc-2019-0001
  8. Gay NJ, Walker JE. 1981. The atp operon: nucleotide sequence of the region encoding the alpha-subunit of Escherichia coli ATP-synthase. Nucleic Acids Res. 9: 2187-2194. https://doi.org/10.1093/nar/9.9.2187
  9. Liu J, Hicks DB, Krulwich TA. 2013. Roles of AtpI and two YidC-type proteins from alkaliphilic Bacillus pseudofirmus OF4 in ATP synthase assembly and nonfermentative growth. J. Bacteriol. 195: 220-230. https://doi.org/10.1128/JB.01493-12
  10. Gay NJ. 1984. Construction and characterization of an Escherichia coli strain with a uncI mutation. J. Bacteriol. 158: 820-825. https://doi.org/10.1128/JB.158.3.820-825.1984
  11. Suzuki T, Ozaki Y, Sone N, Feniouk BA, Yoshida M. 2007. The product of uncI gene in F1Fo-ATP synthase operon plays a chaperone-like role to assist c-ring assembly. Proc. Natl. Acad. Sci. USA 104: 20776-20781. https://doi.org/10.1073/pnas.0708075105
  12. Ozaki Y, Suzuki T, Kuruma Y, Ueda T, Yoshida M. 2008. UncI protein can mediate ring-assembly of c-subunits of F1Fo-ATP synthase in vitro. Biochem. Biophys. Res. Commun. 367: 663-666. https://doi.org/10.1016/j.bbrc.2007.12.170
  13. Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR. 2002. The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J. Bacteriol. 184: 3909-3916. https://doi.org/10.1128/JB.184.14.3909-3916.2002
  14. Hara KY, Kondo A. 2015. ATP regulation in bioproduction. Microb. Cell Fact. 14: 198. https://doi.org/10.1186/s12934-015-0390-6
  15. Zhou J, Liu L, Shi Z, Du G, Chen J. 2009. ATP in current biotechnology: regulation, applications and perspectives. Biotechnol. Adv. 27: 94-101. https://doi.org/10.1016/j.biotechadv.2008.10.005
  16. Causey TB, Shanmugam KT, Yomano LP, Ingram LO. 2004. Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proc. Natl. Acad. Sci. USA 101: 2235-2240. https://doi.org/10.1073/pnas.0308171100
  17. Causey TB, Zhou S, Shanmugam KT, Ingram LO. 2003. Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proc. Natl. Acad. Sci. USA 100: 825-832. https://doi.org/10.1073/pnas.0337684100
  18. Wada M, Narita K, Yokota A. 2007. Alanine production in an $H^+$-ATPase- and lactate dehydrogenase-defective mutant of Escherichia coli expressing alanine dehydrogenase. Appl. Microbiol. Biotechnol. 76: 819-825. https://doi.org/10.1007/s00253-007-1065-y
  19. Koch-Koerfges A, Kabus A, Ochrombel I, Marin K, Bott M. 2012. Physiology and global gene expression of a Corynebacterium glutamicum ${\Delta}F1Fo$-ATP synthase mutant devoid of oxidative phosphorylation. Biochim. Biophys. Acta 1817: 370-380. https://doi.org/10.1016/j.bbabio.2011.10.006
  20. Wada M, Hijikata N, Aoki R, Takesue N, Yokota A. 2008. Enhanced valine production in Corynebacterium glutamicum with defective $H^+$-ATPase and C-terminal truncated acetohydroxyacid synthase. Biosci. Biotechnol. Biochem. 72: 2959-2965. https://doi.org/10.1271/bbb.80434
  21. Barriuso-Iglesias M, Barreiro C, Sola-Landa A, Martin JF. 2013. Transcriptional control of the F1Fo-ATP synthase operon of Corynebacterium glutamicum: SigmaH factor binds to its promoter and regulates its expression at different pH values. Microb. Biotechnol. 6: 178-188. https://doi.org/10.1111/1751-7915.12022
  22. Mustafi N, Grunberger A, Kohlheyer D, Bott M, Frunzke J. 2012. The development and application of a single-cell biosensor for the detection of l-methionine and branchedchain amino acids. Metab. Eng. 14: 449-457. https://doi.org/10.1016/j.ymben.2012.02.002
  23. Okibe N, Suzuki N, Inui M, Yukawa H. 2011. Efficient markerless gene replacement in Corynebacterium glutamicum using a new temperature-sensitive plasmid. J. Microbiol. Methods 85: 155-163. https://doi.org/10.1016/j.mimet.2011.02.012
  24. Robert X, Gouet P. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42: W320-324. https://doi.org/10.1093/nar/gku316
  25. Tusnady GE, Simon I. 2010. Topology prediction of helical transmembrane proteins: how far have we reached? Curr. Protein Pept. Sci. 11: 550-561. https://doi.org/10.2174/138920310794109184
  26. Sawada K, Kato Y, Imai K, Li L, Wada M, Matsushita K, et al. 2012. Mechanism of increased respiration in an $H^+$-ATPase-defective mutant of Corynebacterium glutamicum. J. Biosci. Bioeng. 113: 467-473. https://doi.org/10.1016/j.jbiosc.2011.11.021
  27. Lee IY, Kim MK, Park YH, Lee SY. 1996. Regulatory effects of cellular nicotinamide nucleotides and enzyme activities on poly(3-hydroxybutyrate) synthesis in recombinant Escherichia coli. Biotechnol. Bioeng. 52: 707-712. https://doi.org/10.1002/(SICI)1097-0290(19961220)52:6<707::AID-BIT8>3.0.CO;2-S
  28. Li ZJ, Cai L, Wu Q, Chen GQ. 2009. Overexpression of NAD kinase in recombinant Escherichia coli harboring the phbCAB operon improves poly(3-hydroxybutyrate) production. Appl. Microbiol. Biotechnol. 83: 939-947. https://doi.org/10.1007/s00253-009-1943-6
  29. Shi F, Huan X, Wang X, Ning J. 2012. Overexpression of NAD kinases improves the L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Enzyme Microb. Technol. 51: 73-80. https://doi.org/10.1016/j.enzmictec.2012.04.003
  30. Wang X, Peng F, Dong G, Sun Y, Dai X, Yang Y, et al. 2018. Identification and validation of appropriate reference genes for qRT-PCR analysis in Corynebacterium glutamicum. FEMS Microbiol. Lett. 365(8): doi: 10.1093/femsle/fny030.
  31. Wen S, Chen X, Xu F, Sun H. 2016. Validation of reference genes for real-time quantitative PCR (qPCR) analysis of Avibacterium paragallinarum. PLoS One 11: e0167736. https://doi.org/10.1371/journal.pone.0167736
  32. Sihto HM, Tasara T, Stephan R, Johler S. 2014. Validation of reference genes for normalization of qPCR mRNA expression levels in Staphylococcus aureus exposed to osmotic and lactic acid stress conditions encountered during food production and preservation. FEMS Microbiol. Lett. 356: 134-140. https://doi.org/10.1111/1574-6968.12491
  33. Xu N, Zheng Y, Wang X, Krulwich TA, Ma Y, Liu J. 2018. The Lysine 299 residue endows the multisubunit Mrp1 antiporter with dominant roles in $Na^+$ resistance and pH homeostasis in Corynebacterium glutamicum. Appl. Environ. Microbiol. 84: e00110-118.
  34. Liu J, Fujisawa M, Hicks DB, Krulwich TA. 2009. Characterization of the functionally critical AXAXAXA and PXXEXXP motifs of the ATP synthase c-subunit from an Alkaliphilic Bacillus. J. Biol. Chem. 284: 8714-8725. https://doi.org/10.1074/jbc.M808738200
  35. Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA. 1979. An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem. 100: 95-97. https://doi.org/10.1016/0003-2697(79)90115-5
  36. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, et al. 2003. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J. Biotechnol. 104: 5-25. https://doi.org/10.1016/S0168-1656(03)00154-8
  37. Reinscheid DJ, Schnicke S, Rittmann D, Zahnow U, Sahm H, Eikmanns BJ. 1999. Cloning, sequence analysis, expression and inactivation of the Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase and acetate kinase. Microbiology 145 (Pt 2): 503-513. https://doi.org/10.1099/13500872-145-2-503
  38. Yokota A, Terasawa Y, Takaoka N, Shimizu H, Tomita F. 1994. Pyruvic acid production by an F1-ATPase-defective mutant of Escherichia coli W1485lip2. Biosci. Biotechnol. Biochem. 58: 2164-2167. https://doi.org/10.1271/bbb.58.2164
  39. Liu LM, Li Y, Du GC, Chen J. 2006. Increasing glycolytic flux in Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation. J. Appl. Microbiol. 100: 1043-1053. https://doi.org/10.1111/j.1365-2672.2006.02871.x
  40. Aoki R, Wada M, Takesue N, Tanaka K, Yokota A. 2005. Enhanced glutamic acid production by a $H^+$-ATPase-defective mutant of Corynebacterium glutamicum. Biosci. Biotechnol. Biochem. 69: 1466-1472. https://doi.org/10.1271/bbb.69.1466
  41. Fillingame RH, Angevine CM, Dmitriev OY. 2003. Mechanics of coupling proton movements to c-ring rotation in ATP synthase. FEBS Lett. 555: 29-34. https://doi.org/10.1016/S0014-5793(03)01101-3
  42. Sekiya M, Nakamoto RK, Al-Shawi MK, Nakanishi-Matsui M, Futai M. 2009. Temperature dependence of single molecule rotation of the Escherichia coli ATP synthase F1 sector reveals the importance of gamma-beta subunit interactions in the catalytic dwell. J. Biol. Chem. 284: 22401-22410. https://doi.org/10.1074/jbc.M109.009019
  43. Becker J, Zelder O, Hafner S, Schroder H, Wittmann C. 2011. From zero to hero--design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab. Eng. 13: 159-168. https://doi.org/10.1016/j.ymben.2011.01.003
  44. Park SH, Kim HU, Kim TY, Park JS, Kim SS, Lee SY. 2014. Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nat. Commun. 5: 4618. https://doi.org/10.1038/ncomms5618
  45. Jojima T, Fujii M, Mori E, Inui M, Yukawa H. 2010. Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation. Appl. Microbiol. Biotechnol. 87: 159-165. https://doi.org/10.1007/s00253-010-2493-7
  46. Bartek T, Blombach B, Zonnchen E, Makus P, Lang S, Eikmanns BJ, et al. 2010. Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum. Biotechnol. Prog. 26: 361-371.