DOI QR코드

DOI QR Code

Metagenomic Analysis of the Fecal Microbiomes of Wild Asian Elephants Reveals Microflora and Enzymes that Mainly Digest Hemicellulose

  • Zhang, Chengbo (School of Life Sciences, Yunnan Normal University) ;
  • Xu, Bo (School of Life Sciences, Yunnan Normal University) ;
  • Lu, Tao (Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University) ;
  • Huang, Zunxi (School of Life Sciences, Yunnan Normal University)
  • Received : 2019.04.19
  • Accepted : 2019.07.06
  • Published : 2019.08.28

Abstract

To investigate the diversity of gastrointestinal microflora and lignocellulose-degrading enzymes in wild Asian elephants, three of these animals living in the same group were selected for study from the Wild Elephant Valley in the Xishuangbanna Nature Reserve of Yunnan Province, China. Fresh fecal samples from the three wild Asian elephants were analyzed by metagenomic sequencing to study the diversity of their gastrointestinal microbes and cellulolytic enzymes. There were a high abundance of Firmicutes and a higher abundance of hemicellulose-degrading hydrolases than cellulose-degrading hydrolases in the wild Asian elephants. Furthermore, there were a high abundance and a rich diversity of carbohydrate active enzymes (CAZymes) obtained from the gene set annotation of the three samples, with the majority of them showing low identity with the CAZy database entry. About half of the CAZymes had no species source at the phylum or genus level. These indicated that the wild Asian elephants might possess greater ability to digest hemicellulose than cellulose to provide energy, and moreover, the gastrointestinal tracts of these pachyderms might be a potential source of novel efficient lignocellulose-degrading enzymes. Therefore, the exploitation and utilization of these enzyme resources could help us to alleviate the current energy crisis and ensure food security.

Keywords

References

  1. Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, et al. 2008. How biotech can transform biofuels. Nat. Biotechnol. 26:169-172. https://doi.org/10.1038/nbt0208-169
  2. Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, et al. 2011. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331: 463-467. https://doi.org/10.1126/science.1200387
  3. Wang C, Dong D, Wang H, Muller K, Qin Y, Wang H, et al. 2016. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol. Biofuels 9: 22. https://doi.org/10.1186/s13068-016-0440-2
  4. Jose VL, More RP, Appoothy T, Arun AS. 2017. In depth analysis of rumen microbial and carbohydrate-active enzymes profile in Indian crossbred cattle. Syst. Appl. Microbiol. 40: 160-170. https://doi.org/10.1016/j.syapm.2017.02.003
  5. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, et al. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96: 673-686. https://doi.org/10.1016/j.biortech.2004.06.025
  6. Shoshani J EJ. 1982. Elephas maximus. Mammalian Species 182: 1-8. https://doi.org/10.2307/3504045
  7. Shoshani J EJ. 1982. Elephas maximus. Mammalian Species 182: 42-51.
  8. Li R , F an W , Tian G , Zhu H, He L, Cai J , et al. 2010. The sequence and de novo assembly of the giant panda genome. Nature 463: 311-317. https://doi.org/10.1038/nature08696
  9. Conklin-Brittain NL. 1995. The digestive system in mammals. Food, form and function. Int. J. Primatol. 16: 699-701. https://doi.org/10.1007/BF02735292
  10. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. 2008. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6: 121-131. https://doi.org/10.1038/nrmicro1817
  11. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. 2012. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3: 289-306. https://doi.org/10.4161/gmic.19897
  12. Shoshani J EJ. 1982. Elephas maximus. Mammalian Species 182: 78-79.
  13. Samansiri KAP, Weerakoon DK. 2006. Feeding Behaviour of Asian Elephants in the Northwestern Region of Sri Lanka. Gajah.
  14. Ilmberger N, Gullert S, Dannenberg J, Rabausch U, Torres J, Wemheuer B, et al. 2014. A comparative metagenome survey of the fecal microbiota of a breast- and a plant-fed Asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes. PLoS One 9: e106707. https://doi.org/10.1371/journal.pone.0106707
  15. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59-65. https://doi.org/10.1038/nature08821
  16. Li D, Liu CM, Luo R, Sadakane K, Lam TW. 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31: 1674-1676. https://doi.org/10.1093/bioinformatics/btv033
  17. Li R, Li Y, Kristiansen K, Wang J. 2008. SOAP: short oligonucleotide alignment program. Bioinformatics 24: 713-714. https://doi.org/10.1093/bioinformatics/btn025
  18. Zhu W, Lomsadze A, Borodovsky M. 2010. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38(12): e132. https://doi.org/10.1093/nar/gkq275
  19. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490: 55-60. https://doi.org/10.1038/nature11450
  20. Ondov BD, Bergman NH, Phillippy AM. 2011. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics 12: 385. https://doi.org/10.1186/1471-2105-12-385
  21. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. 2004. The KEGG resource for deciphering the genome. Nucleic Acids Res. 32: D277-D280. https://doi.org/10.1093/nar/gkh063
  22. Kanehisa M. 1997. A database for post-genome analysis. Trends Genet. 13: 375-376. https://doi.org/10.1016/S0168-9525(97)01223-7
  23. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, et al. 2006. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34: D354-D357. https://doi.org/10.1093/nar/gkj102
  24. Powell S, Szklarczyk D, Trachana K, Roth A, Kuhn M, Muller J, et al. 2012. eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic Acids Res. 40: D284-D289. https://doi.org/10.1093/nar/gkr1060
  25. Drula E, Golaconda Ramulu H, Coutinho PM, Lombard V, Henrissat B. 2013. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42: D490-D495. https://doi.org/10.1093/nar/gkt1178
  26. Cantarel BL, Rancurel C, Coutinho PM, Bernard T, Lombard V, Henrissat B. 2008. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37: D233-D238. https://doi.org/10.1093/nar/gkn663
  27. Terrapon N, Lombard V, Gilbert HJ, Henrissat B. 2015. Automatic prediction of polysaccharide utilization loci in Bacteroidetes species. Bioinformatics 31: 647-655. https://doi.org/10.1093/bioinformatics/btu716
  28. Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. 2009. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25: 1422-1423. https://doi.org/10.1093/bioinformatics/btp163
  29. Pritchard L, White JA, Birch PR, Toth IK. 2006. GenomeDiagram: a python package for the visualization of large-scale genomic data. Bioinformatics 22: 616-617. https://doi.org/10.1093/bioinformatics/btk021
  30. Pope PB, Mackenzie AK, Gregor I, Smith W, Sundset MA, McHardy AC, et al. 2012. Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS One 7: e38571. https://doi.org/10.1371/journal.pone.0038571
  31. Stahl DA, Flesher B, Mansfield HR, Montgomery L. 1988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54: 1079-1084. https://doi.org/10.1128/AEM.54.5.1079-1084.1988
  32. Abbott DW, Boraston AB. 2008. Structural biology of pectin degradation by Enterobacteriaceae. Microbiol. Mol. Biol. Rev. 72: 301-316. https://doi.org/10.1128/MMBR.00038-07
  33. Reddy AP, Simmons CW, D'Haeseleer P, Khudyakov J, Burd H, Hadi M, et al. 2013. Discovery of microorganisms and enzymes involved in high-solids decomposition of rice straw using metagenomic analyses. PLoS One 8: e77985. https://doi.org/10.1371/journal.pone.0077985
  34. Saoudi B, Habbeche A, Kerouaz B, Haberra S, Romdhane ZB, Tichati L, et al. 2015. Purification and characterization of a new thermoalkaliphilic pectate lyase from Actinomadura keratinilytica Cpt20. Process Biochem. 50: 2259-2266. https://doi.org/10.1016/j.procbio.2015.10.006
  35. Palevich N, Kelly WJ, Leahy SC, Altermann E, Rakonjac J, Attwood GT. 2017. The complete genome sequence of the rumen bacterium Butyrivibrio hungatei MB2003. Stand. Genomic Sci. 12: 72. https://doi.org/10.1186/s40793-017-0285-8
  36. Farro E, Leite A, Silva IA, Filgueiras JG, de Azevedo ER, Polikarpov I, et al. 2018. GH43 endo-arabinanase from Bacillus licheniformis: Structure, activity and unexpected synergistic effect on cellulose enzymatic hydrolysis. Int. J. Biol. Macromol. 117: 7-16. https://doi.org/10.1016/j.ijbiomac.2018.05.157
  37. Zhu L, Wu Q, Dai J, Zhang S, Wei F. 2011. Evidence of cellulose metabolism by the giant panda gut microbiome. Proc. Natl. Acad. Sci. USA 108: 17714-17719. https://doi.org/10.1073/pnas.1017956108
  38. Gharechahi J, Salekdeh GH. 2018. A metagenomic analysis of the camel rumen's microbiome identifies the major microbes responsible for lignocellulose degradation and fermentation. Biotechnol. Biofuels 11: 216. https://doi.org/10.1186/s13068-018-1214-9
  39. Svartstrom O, Alneberg J, Terrapon N, Lombard V, de Bruijn I, Malmsten J, et al. 2017. Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation. ISME J. 11: 2538-2551. https://doi.org/10.1038/ismej.2017.108
  40. Gullert S, Fischer MA, Turaev D, Noebauer B, Ilmberger N, Wemheuer B, et al. 2016. Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies. Biotechnol. Biofuels 9: 121. https://doi.org/10.1186/s13068-016-0534-x
  41. Campanaro S, Treu L, Kougias PG, Francisci DD, Valle G, Angelidaki I. 2016. Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnol. Biofuels 9: 1-17. https://doi.org/10.1186/s13068-015-0423-8
  42. Jami E, Israel A, Kotser A, Mizrahi I. 2013. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 7: 1069-1079. https://doi.org/10.1038/ismej.2013.2
  43. Armendariz-Ruiz M, Rodriguez-Gonzalez JA, Camacho-Ruiz RM, Mateos-Diaz JC. 2018. Carbohydrate Esterases: An Overview. Methods Mol. Biol. 1835: 39-68. https://doi.org/10.1007/978-1-4939-8672-9_2
  44. Reilly J. 2010. Growth in the Sumatran elephant (Elephas maximus sumatranus) and age estimation based on dung diameter. Proceedings of the Zoological Society of London 258: 205-213. https://doi.org/10.1017/S0952836902001322
  45. Sukumar R. 2006. A brief review of the status, distribution and biology of wild Asian elephants Elephas maximus. Int. Zoo Yearbook 40: 1-8. https://doi.org/10.1111/j.1748-1090.2006.00001.x
  46. Zhang W, Liu W, Hou R, Zhang L, Schmitz-Esser S, Sun H, et al. 2018. Age-associated microbiome shows the giant panda lives on hemicelluloses, not on cellulose. ISME J. 12: 1319-1328. https://doi.org/10.1038/s41396-018-0051-y
  47. Armstrong Z, Mewis K, Liu F, Morgan-Lang C, Scofield M, Durno E, et al. 2018. Metagenomics reveals functional synergy and novel polysaccharide utilization loci in the Castor canadensis fecal microbiome. ISME J. 12: 2757-2769. https://doi.org/10.1038/s41396-018-0215-9

Cited by

  1. Succession of Gut Microbial Structure in Twin Giant Pandas During the Dietary Change Stage and Its Role in Polysaccharide Metabolism vol.11, 2019, https://doi.org/10.3389/fmicb.2020.551038
  2. Deconstruction of Lignin: From Enzymes to Microorganisms vol.26, pp.8, 2021, https://doi.org/10.3390/molecules26082299