References
- Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, et al. 2008. How biotech can transform biofuels. Nat. Biotechnol. 26:169-172. https://doi.org/10.1038/nbt0208-169
- Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, et al. 2011. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331: 463-467. https://doi.org/10.1126/science.1200387
- Wang C, Dong D, Wang H, Muller K, Qin Y, Wang H, et al. 2016. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol. Biofuels 9: 22. https://doi.org/10.1186/s13068-016-0440-2
- Jose VL, More RP, Appoothy T, Arun AS. 2017. In depth analysis of rumen microbial and carbohydrate-active enzymes profile in Indian crossbred cattle. Syst. Appl. Microbiol. 40: 160-170. https://doi.org/10.1016/j.syapm.2017.02.003
- Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, et al. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96: 673-686. https://doi.org/10.1016/j.biortech.2004.06.025
- Shoshani J EJ. 1982. Elephas maximus. Mammalian Species 182: 1-8. https://doi.org/10.2307/3504045
- Shoshani J EJ. 1982. Elephas maximus. Mammalian Species 182: 42-51.
- Li R , F an W , Tian G , Zhu H, He L, Cai J , et al. 2010. The sequence and de novo assembly of the giant panda genome. Nature 463: 311-317. https://doi.org/10.1038/nature08696
- Conklin-Brittain NL. 1995. The digestive system in mammals. Food, form and function. Int. J. Primatol. 16: 699-701. https://doi.org/10.1007/BF02735292
- Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. 2008. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6: 121-131. https://doi.org/10.1038/nrmicro1817
- Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. 2012. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3: 289-306. https://doi.org/10.4161/gmic.19897
- Shoshani J EJ. 1982. Elephas maximus. Mammalian Species 182: 78-79.
- Samansiri KAP, Weerakoon DK. 2006. Feeding Behaviour of Asian Elephants in the Northwestern Region of Sri Lanka. Gajah.
- Ilmberger N, Gullert S, Dannenberg J, Rabausch U, Torres J, Wemheuer B, et al. 2014. A comparative metagenome survey of the fecal microbiota of a breast- and a plant-fed Asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes. PLoS One 9: e106707. https://doi.org/10.1371/journal.pone.0106707
- Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59-65. https://doi.org/10.1038/nature08821
- Li D, Liu CM, Luo R, Sadakane K, Lam TW. 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31: 1674-1676. https://doi.org/10.1093/bioinformatics/btv033
- Li R, Li Y, Kristiansen K, Wang J. 2008. SOAP: short oligonucleotide alignment program. Bioinformatics 24: 713-714. https://doi.org/10.1093/bioinformatics/btn025
- Zhu W, Lomsadze A, Borodovsky M. 2010. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38(12): e132. https://doi.org/10.1093/nar/gkq275
- Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490: 55-60. https://doi.org/10.1038/nature11450
- Ondov BD, Bergman NH, Phillippy AM. 2011. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics 12: 385. https://doi.org/10.1186/1471-2105-12-385
- Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. 2004. The KEGG resource for deciphering the genome. Nucleic Acids Res. 32: D277-D280. https://doi.org/10.1093/nar/gkh063
- Kanehisa M. 1997. A database for post-genome analysis. Trends Genet. 13: 375-376. https://doi.org/10.1016/S0168-9525(97)01223-7
- Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, et al. 2006. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34: D354-D357. https://doi.org/10.1093/nar/gkj102
- Powell S, Szklarczyk D, Trachana K, Roth A, Kuhn M, Muller J, et al. 2012. eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic Acids Res. 40: D284-D289. https://doi.org/10.1093/nar/gkr1060
- Drula E, Golaconda Ramulu H, Coutinho PM, Lombard V, Henrissat B. 2013. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42: D490-D495. https://doi.org/10.1093/nar/gkt1178
- Cantarel BL, Rancurel C, Coutinho PM, Bernard T, Lombard V, Henrissat B. 2008. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37: D233-D238. https://doi.org/10.1093/nar/gkn663
- Terrapon N, Lombard V, Gilbert HJ, Henrissat B. 2015. Automatic prediction of polysaccharide utilization loci in Bacteroidetes species. Bioinformatics 31: 647-655. https://doi.org/10.1093/bioinformatics/btu716
- Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. 2009. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25: 1422-1423. https://doi.org/10.1093/bioinformatics/btp163
- Pritchard L, White JA, Birch PR, Toth IK. 2006. GenomeDiagram: a python package for the visualization of large-scale genomic data. Bioinformatics 22: 616-617. https://doi.org/10.1093/bioinformatics/btk021
- Pope PB, Mackenzie AK, Gregor I, Smith W, Sundset MA, McHardy AC, et al. 2012. Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS One 7: e38571. https://doi.org/10.1371/journal.pone.0038571
- Stahl DA, Flesher B, Mansfield HR, Montgomery L. 1988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54: 1079-1084. https://doi.org/10.1128/AEM.54.5.1079-1084.1988
- Abbott DW, Boraston AB. 2008. Structural biology of pectin degradation by Enterobacteriaceae. Microbiol. Mol. Biol. Rev. 72: 301-316. https://doi.org/10.1128/MMBR.00038-07
- Reddy AP, Simmons CW, D'Haeseleer P, Khudyakov J, Burd H, Hadi M, et al. 2013. Discovery of microorganisms and enzymes involved in high-solids decomposition of rice straw using metagenomic analyses. PLoS One 8: e77985. https://doi.org/10.1371/journal.pone.0077985
- Saoudi B, Habbeche A, Kerouaz B, Haberra S, Romdhane ZB, Tichati L, et al. 2015. Purification and characterization of a new thermoalkaliphilic pectate lyase from Actinomadura keratinilytica Cpt20. Process Biochem. 50: 2259-2266. https://doi.org/10.1016/j.procbio.2015.10.006
- Palevich N, Kelly WJ, Leahy SC, Altermann E, Rakonjac J, Attwood GT. 2017. The complete genome sequence of the rumen bacterium Butyrivibrio hungatei MB2003. Stand. Genomic Sci. 12: 72. https://doi.org/10.1186/s40793-017-0285-8
- Farro E, Leite A, Silva IA, Filgueiras JG, de Azevedo ER, Polikarpov I, et al. 2018. GH43 endo-arabinanase from Bacillus licheniformis: Structure, activity and unexpected synergistic effect on cellulose enzymatic hydrolysis. Int. J. Biol. Macromol. 117: 7-16. https://doi.org/10.1016/j.ijbiomac.2018.05.157
- Zhu L, Wu Q, Dai J, Zhang S, Wei F. 2011. Evidence of cellulose metabolism by the giant panda gut microbiome. Proc. Natl. Acad. Sci. USA 108: 17714-17719. https://doi.org/10.1073/pnas.1017956108
- Gharechahi J, Salekdeh GH. 2018. A metagenomic analysis of the camel rumen's microbiome identifies the major microbes responsible for lignocellulose degradation and fermentation. Biotechnol. Biofuels 11: 216. https://doi.org/10.1186/s13068-018-1214-9
- Svartstrom O, Alneberg J, Terrapon N, Lombard V, de Bruijn I, Malmsten J, et al. 2017. Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation. ISME J. 11: 2538-2551. https://doi.org/10.1038/ismej.2017.108
- Gullert S, Fischer MA, Turaev D, Noebauer B, Ilmberger N, Wemheuer B, et al. 2016. Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies. Biotechnol. Biofuels 9: 121. https://doi.org/10.1186/s13068-016-0534-x
- Campanaro S, Treu L, Kougias PG, Francisci DD, Valle G, Angelidaki I. 2016. Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnol. Biofuels 9: 1-17. https://doi.org/10.1186/s13068-015-0423-8
- Jami E, Israel A, Kotser A, Mizrahi I. 2013. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 7: 1069-1079. https://doi.org/10.1038/ismej.2013.2
- Armendariz-Ruiz M, Rodriguez-Gonzalez JA, Camacho-Ruiz RM, Mateos-Diaz JC. 2018. Carbohydrate Esterases: An Overview. Methods Mol. Biol. 1835: 39-68. https://doi.org/10.1007/978-1-4939-8672-9_2
- Reilly J. 2010. Growth in the Sumatran elephant (Elephas maximus sumatranus) and age estimation based on dung diameter. Proceedings of the Zoological Society of London 258: 205-213. https://doi.org/10.1017/S0952836902001322
- Sukumar R. 2006. A brief review of the status, distribution and biology of wild Asian elephants Elephas maximus. Int. Zoo Yearbook 40: 1-8. https://doi.org/10.1111/j.1748-1090.2006.00001.x
- Zhang W, Liu W, Hou R, Zhang L, Schmitz-Esser S, Sun H, et al. 2018. Age-associated microbiome shows the giant panda lives on hemicelluloses, not on cellulose. ISME J. 12: 1319-1328. https://doi.org/10.1038/s41396-018-0051-y
- Armstrong Z, Mewis K, Liu F, Morgan-Lang C, Scofield M, Durno E, et al. 2018. Metagenomics reveals functional synergy and novel polysaccharide utilization loci in the Castor canadensis fecal microbiome. ISME J. 12: 2757-2769. https://doi.org/10.1038/s41396-018-0215-9
Cited by
- Succession of Gut Microbial Structure in Twin Giant Pandas During the Dietary Change Stage and Its Role in Polysaccharide Metabolism vol.11, 2019, https://doi.org/10.3389/fmicb.2020.551038
- Deconstruction of Lignin: From Enzymes to Microorganisms vol.26, pp.8, 2021, https://doi.org/10.3390/molecules26082299