DOI QR코드

DOI QR Code

1H-NMR-Based Metabolic Profiling of Cordyceps militaris to Correlate the Development Process and Anti-Cancer Effect

  • Oh, Junsang (Translational Research Division, Biomedical Institute of Mycological Resource, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University) ;
  • Choi, Eunhyun (Kainos Medicine, Inc.) ;
  • Yoon, Deok-Hyo (Translational Research Division, Biomedical Institute of Mycological Resource, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University) ;
  • Park, Tae-Yong (Translational Research Division, Biomedical Institute of Mycological Resource, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University) ;
  • Shrestha, Bhushan (Mushtech Cordyceps Institute) ;
  • Choi, Hyung-Kyoon (College of Pharmacy, Chung-Ang University) ;
  • Sung, Gi-Ho (Translational Research Division, Biomedical Institute of Mycological Resource, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University)
  • Received : 2019.04.03
  • Accepted : 2019.07.17
  • Published : 2019.08.28

Abstract

The study of metabolomics in natural products using the diverse analytical instruments including GC-MS, LC-MS, and NMR is useful for the exploration of physiological and biological effects and the investigation of drug discovery and health functional foods. Cordyceps militaris has been very attractive to natural medicine as a traditional Chinese medicine, due to its various bioactive properties including anti-cancer and anti-oxidant effects. In this study, we analyzed the metabolite profile in 50% ethanol extracts of C. militaris fruit bodies from three development periods (growth period, matured period, and aging period) using $^1H-NMR$, and identified 44 metabolites, which are classified as 16 amino acids, 10 organic acids, 5 carbohydrates, 3 nucleotide derivatives, and 10 other compounds. Among the three development periods of the C. militaris fruit body, the aging period showed significantly higher levels of metabolites including cordycepin, mannitol (cordycepic acid), and ${\beta}-glucan$. Interestingly, these bioactive metabolites are positively correlated with antitumor growth effect; the extract of the aging period showed significant inhibition of HepG2 hepatic cancer cell proliferation. These results showed that the aging period during the development of C. militaris fruit bodies was more highly enriched with bioactive metabolites that are associated with cancer cell growth inhibition.

Keywords

References

  1. Elsayed EA, El Enshasy H, Wadaan MA, Aziz R. 2014. Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications. Mediators Inflamm. 2014: 805841. https://doi.org/10.1155/2014/805841
  2. Sung GH, Hywel-Jones NL, Sung JM, Luangsa-Ard JJ, Shrestha B, Spatafora JW. 2007. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud. Mycol. 57: 5-59. https://doi.org/10.3114/sim.2007.57.01
  3. Shrestha B, Zhang W, Zhang Y, Liu X. 2012. The medicinal fungus Cordyceps militaris: research and development. Mycological progress. 11: 599-614. https://doi.org/10.1007/s11557-012-0825-y
  4. Das SK, Masuda M, Sakurai A, Sakakibara M. 2010. Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia 81: 961-968. https://doi.org/10.1016/j.fitote.2010.07.010
  5. Hur H. 2008. Chemical Ingredients of Cordyceps militaris. Mycobiology 36: 233-235. https://doi.org/10.4489/MYCO.2008.36.4.233
  6. Smiderle FR, Baggio CH, Borato DG, Santana-Filho AP, Sassaki GL, Iacomini M, et al. 2014. Anti-inflammatory properties of the medicinal mushroom Cordyceps militaris might be related to its linear (1-->3)-beta-D-glucan. PLoS One. 9: e110266. https://doi.org/10.1371/journal.pone.0110266
  7. Reis FS, Barros L, Calhelha RC, Ciric A, van Griensven LJ, Sokovic M, et al. 2013. The methanolic extract of Cordyceps militaris (L.) Link fruiting body shows antioxidant, antibacterial, antifungal and antihuman tumor cell lines properties. Food Chem. Toxicol. 62: 91-98. https://doi.org/10.1016/j.fct.2013.08.033
  8. Jeong JW, J in CY, P ark C, H an MH, Kim GY, Moon SK, et al. 2012. Inhibition of migration and invasion of LNCaP human prostate carcinoma cells by cordycepin through inactivation of Akt. Int. J. Oncol. 40: 1697-1704. https://doi.org/10.3892/ijo.2012.1332
  9. Jeong MH, Lee CM, Lee SW, Seo SY, Seo MJ, Kang BW, et al. 2013. Cordycepin-enriched Cordyceps militaris induces immunomodulation and tumor growth delay in mouse-derived breast cancer. Oncol. Rep. 30: 1996-2002. https://doi.org/10.3892/or.2013.2660
  10. Lee S, Lee HH, Kim J, Jung J, Moon A, Jeong CS, et al. 2015. Anti-tumor effect of Cordyceps militaris in HCV-infected human hepatocarcinoma 7.5 cells. J. Microbiol. 53: 468-474. https://doi.org/10.1007/s12275-015-5198-x
  11. Zhu ZY, Pang W, Li YY, Ge XR, Chen LJ, Liu XC, et al. 2014. Effect of ultrasonic treatment on structure and antitumor activity of mycelial polysaccharides from Cordyceps gunnii. Carbohydr. Polym. 114: 12-20. https://doi.org/10.1016/j.carbpol.2014.07.068
  12. Lee EJ, Kim WJ, Moon SK. 2010. Cordycepin suppresses TNF-alpha-induced invasion, migration and matrix metalloproteinase-9 expression in human bladder cancer cells. Phytother. Res. 24: 1755-1761. https://doi.org/10.1002/ptr.3132
  13. Cunningham KG, Manson W, Spring FS, Hutchinson SA. 1950. Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) Link. Nature 166: 949.
  14. Yoshikawa N, Yamada S, Takeuchi C, Kagota S, Shinozuka K, Kunitomo M, et al. 2008. Cordycepin (3'-deoxyadenosine) inhibits the growth of B16-BL6 mouse melanoma cells through the stimulation of adenosine A3 receptor followed by glycogen synthase kinase-3beta activation and cyclin D1 suppression. Naunyn Schmiedebergs Arch. Pharmacol. 377: 591-595. https://doi.org/10.1007/s00210-007-0218-y
  15. Song J, Wang Y, Teng M, Cai G, Xu H, Guo H, et al. 2015. Studies on the antifatigue activities of cordyceps militaris fruit body extract in mouse model. Evid Based Complement Alternat. Med. 2015: 174616.
  16. Shao LW, Huang LH, Yan S, Jin JD, Ren SY. 2016. Cordycepin induces apoptosis in human liver cancer HepG2 cells through extrinsic and intrinsic signaling pathways. Oncol Lett. 12: 995-1000. https://doi.org/10.3892/ol.2016.4706
  17. Tuli HS, Sandhu SS, Sharma AK. 2014. Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. 3 Biotech. 4: 1-12. https://doi.org/10.1007/s13205-013-0121-9
  18. Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, et al. 2011. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol. 12: R116. https://doi.org/10.1186/gb-2011-12-11-r116
  19. Xia Y, Luo F, Shang Y, Chen P, Lu Y, Wang C. 2017. Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin. Cell Chem Biol. 24: 1479-1489. https://doi.org/10.1016/j.chembiol.2017.09.001
  20. Hasko G, Cronstein BN. 2004. Adenosine: an endogenous regulator of innate immunity. Trends Immunol. 25: 33-39. https://doi.org/10.1016/j.it.2003.11.003
  21. Wang JH, Byun J, Pennathur S. 2010. Analytical approaches to metabolomics and applications to systems biology. Semin Nephrol. 30: 500-511. https://doi.org/10.1016/j.semnephrol.2010.07.007
  22. Corte L, Tiecco M, Roscini L, De Vincenzi S, Colabella C, Germani R, et al. 2015. FTIR metabolomic fingerprint reveals different modes of action exerted by structural variants of N-alkyltropinium bromide surfactants on Escherichia coli and Listeria innocua cells. PLoS One 10: e0115275. https://doi.org/10.1371/journal.pone.0115275
  23. Park SJ, Hyun S-H, Suh HW, Lee S-Y, Sung G-H, Kim SH, et al. 2013. Biochemical characterization of cultivated Cordyceps bassiana mycelia and fruiting bodies by 1 H nuclear magnetic resonance spectroscopy. Metabolomics 9: 236-246. https://doi.org/10.1007/s11306-012-0442-4
  24. Hyun SH, Lee SY, Sung GH, Kim SH, Choi HK. 2013. Metabolic profiles and free radical scavenging activity of Cordyceps bassiana fruiting bodies according to developmental stage. PLoS One 8: e73065. https://doi.org/10.1371/journal.pone.0073065
  25. Oh J, Yoon DH, Shrestha B, Choi HK, Sung GH. 2019. Metabolomic profiling reveals enrichment of cordycepin in senescence process of Cordyceps militaris fruit bodies. J. Microbiol. 57: 54-63. https://doi.org/10.1007/s12275-019-8486-z
  26. Shrestha B, Han SK, Sung JM, Sung GH. 2012. Fruiting body formation of cordyceps militaris from multi-ascospore isolates and their single ascospore progeny strains. Mycobiology 40: 100-106. https://doi.org/10.5941/MYCO.2012.40.2.100
  27. Lee SG, Hyun S-H, Sung G-H, Choi H-K. 2014. Simple and rapid determination of cordycepin in cordyceps militaris fruiting bodies by quantitative nuclear magnetic resonance spectroscopy. Analytical Lett. 47: 1031-1042. https://doi.org/10.1080/00032719.2013.862625
  28. Chan GC-F, Chan WK, Sze DM-Y. 2009. The effects of ${\beta}$-glucan on human immune and cancer cells. J. Hematol. Oncol. 2: 25. https://doi.org/10.1186/1756-8722-2-25
  29. Cho J-H, Lee J-Y, Lee M-J, Oh H-N, Kang D-H, Jhune C-S. 2013. Comparative analysis of useful ${\beta}$-glucan and polyphenol in the fruiting bodies of Ganoderma spp. J. Mushrooms 11: 164-170. https://doi.org/10.14480/JM.2013.11.3.164
  30. Kang C, Wen T-C, Kang J-C, Meng Z-B, Li G-R, Hyde KD. 2014. Optimization of large-scale culture conditions for the production of cordycepin with Cordyceps militaris by liquid static culture. ScientificWorldJournal. 2014:510627.
  31. Papaspyridi L-M, Zerva A, Topakas E. 2018. Biocatalytic synthesis of fungal ${\beta}$-glucans. Catalysts 8: 274. https://doi.org/10.3390/catal8070274
  32. Huang W, Haferkamp I, Lepetit B, Molchanova M, Hou S, Jeblick W, et al. 2018. Reduced vacuolar beta-1,3-glucan synthesis affects carbohydrate metabolism as well as plastid homeostasis and structure in Phaeodactylum tricornutum. Proc. Natl. Acad. Sci. USA 115: 4791-4796. https://doi.org/10.1073/pnas.1719274115
  33. Park SE, Kim J, Lee YW, Yoo HS, Cho CK. 2009. Antitumor activity of water extracts from Cordyceps militaris in NCI-H460 cell xenografted nude mice. J. Acupunct. Meridian Stud. 2: 294-300. https://doi.org/10.1016/S2005-2901(09)60071-6
  34. Lee HH, Lee S, Lee K, Shin YS, Kang H, Cho H. 2015. Anticancer effect of Cordyceps militaris in human colorectal carcinoma RKO cells via cell cycle arrest and mitochondrial apoptosis. Daru 23: 35. https://doi.org/10.1186/s40199-015-0117-6
  35. Jin Y, Meng X, Qiu Z, Su Y, Yu P, Qu P. 2018. Anti-tumor and anti-metastatic roles of cordycepin, one bioactive compound of Cordyceps militaris. Saudi J. Biol. Sci. 25: 991-995. https://doi.org/10.1016/j.sjbs.2018.05.016
  36. Karaduman D, Eren B, Keles ON. 2010. The protective effect of beta-1,3-D-glucan on taxol-induced hepatotoxicity: a histopathological and stereological study. Drug Chem. Toxicol. 33: 8-16. https://doi.org/10.3109/01480540903380472
  37. Yoon TJ, Koppula S, Lee KH. 2013. The effects of betaglucans on cancer metastasis. Anticancer Agents Med. Chem. 13: 699-708. https://doi.org/10.2174/1871520611313050004
  38. Cui ZY, Park SJ, Jo E, Hwang IH, Lee KB, Kim SW, et al. 2018. Cordycepin induces apoptosis of human ovarian cancer cells by inhibiting CCL5-mediated Akt/NF-kappaB signaling pathway. Cell Death Discov. 4: 62. https://doi.org/10.1038/s41420-018-0063-4
  39. Jafaar ZM, Litchfield LM, Ivanova MM, Radde BN, Al-Rayyan N, Klinge CM. 2014. beta-D-glucan inhibits endocrine-resistant breast cancer cell proliferation and alters gene expression. Int. J. Oncol. 44: 1365-1375. https://doi.org/10.3892/ijo.2014.2294
  40. Shomori K, Yamamoto M, Arifuku I, Teramachi K, Ito H. 2009. Antitumor effects of a water-soluble extract from Maitake (Grifola frondosa) on human gastric cancer cell lines. Oncol. Rep. 22: 615-620.

Cited by

  1. Structural integrity of additively manufactured aluminum alloys: Effects of build orientation on microstructure, porosity, and fatigue behavior vol.47, 2021, https://doi.org/10.1016/j.addma.2021.102292