DOI QR코드

DOI QR Code

Comparison of butterfly monitoring methods in agricultural landscapes in Korea

우리나라 농촌경관에 서식하는 나비 모니터링 조사 방법 비교 연구

  • Choi, Sei-Woong (Environmental Ecology Lab., Department of Environmental Education, Mokpo National University)
  • 최세웅 (목포대학교 환경교육과 환경생태학실험실)
  • Received : 2019.03.05
  • Accepted : 2019.03.18
  • Published : 2019.03.31

Abstract

Global warming has a significant impact on diverse ecosystems including agroecosystem through; changing of phenology, physiology and distribution. Monitoring of biological responses emanating from global warming is required to understand the challenges of biological diversity conservation posed by climate change. The Korean government selected four butterfly species as indicators of climate change in agroecosystem: Papilio xuthus, Pieris rapae, Colias erate, and Eurema mandarina. The aim of this study was to investigate the different monitoring methods of the butterflies in Korea and suggest a suitable monitoring method to track the population trends of butterflies in the agroecosystem. Butterfly monitoring was conducted in eight sites throughout Korea from April to October, 2018 using three survey methods: point census at rice paddy area, point census at the border between rice paddy and hill and line transect along the rice paddy and hill. Each method took approximately 30 min. to count the butterflies. A total of 4,691 butterflies and 92 species were counted: The most dominant species was Pieris rapae with a total count of 1,205 individuals followed by Polygonia c-aureum, Zizeeria maha, Colias erate, Cupido argiades and Papilio xuthus. Among the three census methods, the total number of species and individuals when using line transect method was statistically higher than in the other methods. However, the numbers of the four butterflies indicators showed no difference throughout three census methods. Based on the number of species and the total individuals butterflies in agroecosystem, we advocate for the application of line transect method as it can find more butterflies in agroecosystem. In addition, we advised for the implementation of education programs on the line transect method in butterfly identification to participants of the national monitoring program.

지구온난화는 농업생태계를 포함한 지구상 다양한 생태계에 생물계절, 생리, 분포 등 변화를 줌으로써 큰 영향을 미치고 있다. 지구온난화로 인한 생물상 반응을 모니터링하는 것은 기후변화가 초래한 위기로 생물다양성을 보전할 수 있는 답을 얻기 위한 하나의 노력이다. 우리나라에서는 농업생태계 기후변화지표종으로 배추흰나비, 노랑나비, 호랑나비, 남방노랑나비 4종을 선정하였다. 이 연구에서는 농업생태계에서 나비를 모니터링하기 위한 서로 다른 방법을 적용한 후 가장 적절하게 여겨지는 방법을 제시하고자 실시하였다. 나비 모니터링은 전국에서 8지점을 대상으로 2018년 4월부터 10월까지 월 1~2회 실시하였다. 조사방법은 세가지로 농지에서 점 조사, 여러 농촌 경관과 산지를 포함하는 점 조사, 농지와 산지를 포함한 경로를 따라 조사하는 선 조사법이었으며 조사 시간은 모두 30분으로 동일하게 진행하였다. 조사결과 총 92종 4691개체가 확인되었으며 배추흰나비가 1205개체로 가장 우점하였으며 네발나비, 남방부전나비, 노랑나비, 암먹부전나비 순으로 나타났다. 세 방법 간 총 나비종 수와 개체수는 선 조사법에서 높았다. 기후변화지표종 4종을 대상으로 비교한 결과에서는 조사방법간 통계적인 차이가 나타나지 않았다. 이 연구를 통하여 농업생태계에서 기후변화에 따른 나비상 변화를 모니터링하기 위하여 선 조사법을 이용하는 것이 종 다양성과 풍부도면에서 효율적이라고 판단하며 이 방법을 전국적으로 시행하기 위해서는 사전 교육이 반드시 필요하다는 것을 제안한다.

Keywords

References

  1. Anderson DR, JL Laake, BR Crain and KP Burnham. 1979. Guidelines for line transect sampling of biological populations. J. Wildlife Manage. 43:70-78. https://doi.org/10.2307/3800636
  2. Andrew NR, SJ Hill, M Binns, MH Bahar, EV Ridley, MP Jung, C Fyfe, M Yates and M Khusro. 2013. Assessing insect response to climate change: What are we testing for? Where should we be heading? PeerJ 1:e11. https://doi.org/10.7717/peerj.11
  3. Asher J, M Warren, R Fox, P Harding, G Jeffcoate and S Jeffcoate. 2001. The millennium atlas of butterflies in Britain and Ireland. Oxford University Press, Oxford. p. 456.
  4. Choi SW and JS An. 2015. Pattern of change of the local butterfly community in a rural area of southwestern part of Korea. Korean J. Environ. Biol. 33:53-62. https://doi.org/10.11626/KJEB.2015.33.1.053
  5. Dennis EB, BJT Morgan, TM Brereton, DB Roy and R Fox. 2017. Using citizen science butterfly counts to predict species population trends. Conserv. Biol. 31:1350-1361. https://doi.org/10.1111/cobi.12956
  6. Garbach K, JC Milder, M Montenegro, DS Karp and FAJ DeClerck. 2014. Biodiversity and Ecosystem services in agroecosystems. pp. 21-40. In Encyclopedia of Agriculture and Food Systems (2nd ed.). Academic Press, Cambridge, Massachusetts.
  7. Hammer O, DAT Harper and PD Ryan. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeo. Electron. 4:1-9.
  8. Kim DS, H Yi, YJ Kwon and MS Woo. 2007. The butterfly community dynamics at Mt. Midong, Cheongwon-gun, Chungcheongbukdo, Korean J. Environ. Biol. 25:319-325.
  9. Kim DS, DS Park, HS Oh, DH Kim and JC Jeong. 2013. Butterfly community monitoring on Wolchulsan National Park in Korea. Korean J. Environ. Ecol. 27:196-203.
  10. Kim MH, SW Choi, C Jung, KJ Ahn, YJ Oh, YJ Song, SI Kwon, J Eo and HK Nam. 2018. Indicator species of climate change in agroecosystem of Korea. National Institute of Agricultural Sciences. Wanju. p. 135.
  11. Kitahara M and M Watanabe. 2003. Diversity and rarity hotspots and conservation of butterfly communities in and around the Aokigahara woodland of Mount Fuji, Central Japan. Ecol. Res. 18:503-522. https://doi.org/10.1046/j.1440-1703.2003.00574.x
  12. Marsden SJ. 2008. Estimation of parrot and hornbill densities using a point count distance sampling method. IBIS 141:327-390. https://doi.org/10.1111/j.1474-919X.1999.tb04405.x
  13. Moonen AC and P Barberi. 2008. Functional biodiversity: An agroecosystem approach. Agric. Ecosyst. Environ. 127:7-21. https://doi.org/10.1016/j.agee.2008.02.013
  14. Odum EP. 1969. The strategy of ecosystem development. Science 164:262-270. https://doi.org/10.1126/science.164.3877.262
  15. Pollard E and TJ Yates. 1993. Monitoring Butterflies for Ecology and Conservation. Chapman & Hall, London.
  16. Pollard E, D Moss and TJ Yates. 1995. Population trends of common British butterflies at monitored sites. J. Appl. Ecol. 32:9-16. https://doi.org/10.2307/2404411
  17. Soderstom B, B Svensson, K Vessby and A Glimster. 2001. Plants, insects and birds in semi-natural pastures in relation to local habitat and landscape factors. Biodivers. Conserv. 10:1839-1863. https://doi.org/10.1023/A:1013153427422
  18. Thomas JA. 2005. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Phil. Trans. R. Soc. B 360:339-357. https://doi.org/10.1098/rstb.2004.1585
  19. Traill LW, MLM Lim, NS Sodhi and CJA Bradshaw. 2010. Mechanisms driving change: altered species interactions and ecosystem function through global warming. J. Anim. Ecol. 79:937-947. https://doi.org/10.1111/j.1365-2656.2010.01695.x
  20. Tscharntke T, AM Klein, A Kruess, I Steffan-Dewenter and C Thies. 2005. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol. Lett. 8:857-874. https://doi.org/10.1111/j.1461-0248.2005.00782.x
  21. Van Swaay CAM, P Nowicki, J Settele and AJ van Strien. 2008. Butterfly monitoring in Europe: methods, applications and perspectives. Biodivers. Conserv. 17:3445-3469.
  22. Vitousek PM. 1994. Beyond global warming: Ecology and global change. Ecology 75:1861-1876. https://doi.org/10.2307/1941591
  23. Westphal C, I Steffan-Dewenter and T Tscharntke. 2003. Mass flowering crops enhance densities at a landscape scale. Ecol. Lett. 6:961-965. https://doi.org/10.1046/j.1461-0248.2003.00523.x
  24. Zhang W, TH Ricketts, C Kremen, K Carney and SM Swinton. 2007. Ecosystem services and dis-services to agriculture. Ecol. Econ. 64:253-260. https://doi.org/10.1016/j.ecolecon.2007.02.024