그림 1. 제안된 심장박동기의 전체시스템 구조도 Fig. 1 Overall system structure of the proposed pacemaker
그림 2. 심장박동기 티타늄 시제품 및 내부에 사용되는 TENG 발전소자 Fig. 2 Built-in TENG generator source and titanium based prototype with the pacemaker
그림 3. TENG의 전력 변환 및 발전구조 Fig. 3 Power conversion and power generation structure associated with the TNEG
그림 4. 3~5Hz에서의 TENG 발전량 결과 (위, 전류/ 아래, 전압) Fig. 4 TENG power generation results at 3~5Hz (Top, Voltage/Bottom, Current)
그림 5. 심장박동기 보드(왼쪽)과 TENG 하베스팅보드(오른쪽) Fig. 5 Pacemaker(Left) and TENG Harvesting Board(Right)
그림 6. TENG 하베스팅보드의 출력 전력 검증 Fig. 6 Output voltage and current of the TENG Harvesting Board
그림 7. 심장박동기 모니터링 인터페이스 Fig. 7 Pacemaker remote monitoring UI
그림 8. 심장박동기 설정 인터페이스 Fig. 8 Pacemaker device remote control UI
그림 9. 심장박동기의 전임상시험과 수술과정 Fig. 9 Preclinical study and animal operation of Pacemaker
그림 10. 잡견 동작에 따른 자가발전 심장박동기 발전 전압 모니터링 Fig. 10 Generation voltage monitoring of the Self-powered pacemaker according by animal movement
참고문헌
- K, Murakawa, M. Kobayashi, O. Nakamura, and S. Kawata, "A wireless near-infrared energy system for medical implants," IEEE Engineering Medicine and Biology Mag., vol. 18, 1999, pp 70-72. https://doi.org/10.1109/51.805148
- H. Ouyang, Z. Liu, N. Li, B. Shi, Y. Zou, F. Xie, Y. Ma, Z. Li, H. Li, Q. Zheng, X. Qu, Y. Fan, Z. L. Wang, H. Zhang, and Z. Li, "Symbiotic cardiac pacemaker," nature communications, vol. 10, no. 1, Dec. 2019, pp 1-20. https://doi.org/10.1038/s41467-018-07882-8
- Q. Zheng, B. Shi, F. Fan, X. Wang, L. Yan, W. Yuan, S. Wang, H. Liu, Z. Li, and Z. Wang, "In Vivo Powering of Pacemaker by Breathing‐Driven Implanted Triboelectric Nanogenerator," Advanced materials, vol. 26, no. 33, July. 2014, pp. 5851-5856. https://doi.org/10.1002/adma.201402064
- A. Amar, A. Kouki, and H. Cao, "Power Approaches for Implantable Medical Devices," Sensors, vol. 15, no. 11, Nov. 2015, pp. 28889-28914. https://doi.org/10.3390/s151128889
- A. DeHennis, S. Getzlaff, D. Grice, and M. Mailand, "An NFC-Enabled CMOS IC for a Wireless Fully Implantable Glucose Sensor," IEEE j. of biomedical and health informatics, vol. 20, no. 1, Jan. 2016, pp 18-28. https://doi.org/10.1109/JBHI.2015.2475236
- R. Mahdi and S. Loius, "Energy sources and their development for application in medical devices," J. of Expert Review of Medical Devices, vol. 7. no. 5, Sept. 2010, pp. 693-709. https://doi.org/10.1586/erd.10.20
- C. Sue and N. Tsai, "Human powered MEMS-based energy harvest devices," J. of Applied energy, vol. 93, May. 2002, pp. 390-403.
- K. Selvan and M. Ali, "Micro-scale energy harvesting devices: Review of methodological performances in the last decade," J. of Renewable and Sustainable Energy Reviews, vol. 54, Feb. 2016, pp. 1035-1047. https://doi.org/10.1016/j.rser.2015.10.046
- J. Katic, S. Rodriguez, and A. Rusu, "A High-Efficiency Energy Harvesting Interface for Implanted Biofuel Cell and Thermal Harvesters," IEEE Trans. on Power Electronics, vol. 33, no. 5, May 2018, pp. 4125-4134. https://doi.org/10.1109/TPEL.2017.2712668
- Z. Yang, S. Zhou, J. Zu, and D. Inman, "High-performance piezoelectric energy harvesters and their applications," J. of Joule, vol. 2, no. 4, Apr. 2018, pp. 642-697. https://doi.org/10.1016/j.joule.2018.03.011
- Q. Zheng, Y. Zou, Y. Zhang, Z. Liu, B. Shin, X. Wang, Y. Jin, H. Ouyang, Z. Li, and Z. Wang, "Biodegradable triboelectric nanogenerator as a life-time designed implantable power source," Science Advances, vol. 2, no. 3, Mar. 2016, pp. 1-6.
- H. Park, T. Hwang, and D. Kim, "A Development of Energy Storage Monitoring System Architecture for Triboelectric Nanogenerator in the Implant Environment," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 2, Apr. 2018, pp. 473-480. https://doi.org/10.13067/JKIECS.2018.13.2.473
- H. Park, D. Kim, and B. Kim, "A Development of P-EH(Practical Energy Harvester) Platform for Non-Linear Energy Harvesting Environment in Wearable Device," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 5, Oct. 2018, pp. 1093-1100. https://doi.org/10.13067/JKIECS.2018.13.5.1093
- P. Kumar, V. Babu, A. Subramanian, A. Bandla, N. Thakor, S. Ramakrishna, and H. Wei, "The Design of a Thermoelectric Generator and Its Medical Applications." J. of Designs, vol. 3, no. 2, Apr. 2019, pp. 1-26.
- FDA, 'Ultrasound Imaging:Diagnostic ultrasonic transducer, 892.1570, 90-ITX', U.S, 2016.
- N. Jackson, Z. Olszewski, C. O'Murchu, and A. Mathewson, "Shock-induced aluminum nitride based MEMS energy harvester to power a leadless pacemaker," Sensors and Actuators A: Physical. vol. 264, no. 1. Sept. 2017, pp. 212-218. https://doi.org/10.1016/j.sna.2017.08.005
- H. Park, J. Kwon, D. Kim, and B. Kim, "Multi-Source Based Energy Harvesting Architecture for IoT and Wearable System," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 1, Feb. 2019, pp. 225-234. https://doi.org/10.13067/JKIECS.2019.14.1.225