DOI QR코드

DOI QR Code

블록체인 활용에 대한 테크노스트레스가 기술수용모델(TAM)에 미치는 영향

The Effects of Technostress from using Blockchain on the Technology Acceptance Model(TAM)

  • 이항 (가천대학교 글로벌경제학과) ;
  • 김준환 (성결대학교 파이데이아학부)
  • Lee, Hang (Department of Global Economics, Gachon University) ;
  • Kim, Joon-Hwan (Department of Paideia, Sungkyul University)
  • 투고 : 2019.07.11
  • 심사 : 2019.08.20
  • 발행 : 2019.08.28

초록

본 연구는 기술수용모델(TAM, Technology Acceptance Model)을 기반으로 IT기업 종사자의 테크노스트레스와 기술수용자간의 수용행동을 분석하고, 이에 대한 수용자의 지속적 사용의도를 파악하여 각 변인들 간의 관계를 분석하는데 연구의 목적이 있다. 구조방정식으로 분석한 결과는 다음과 같다. 첫째, IT기업 종사자의 테크노스트레스는 지각된 사용 용이성과 지각된 유용성에 부(-)의 영향을 미치는 것으로 나타났다. 둘째, 심리적 임파워먼트는 테크노스트레스와 기술수용 모델간의 관계에 대하여 유의한 조절효과를 보였다. 셋째, IT기업 종사자의 지각된 사용 용이성은 지속적 사용의도에 정(+)의 영향을 미치는 것으로 나타났고, 지각된 유용성도 지속적 사용의도에 정(+)의 영향을 미치는 것으로 나타났다. 이러한 연구결과는 테크노스트레스를 관리하는 것뿐만 아니라 심리적 임파워먼트를 향상시키고 이를 위한 훈련과 교육이 지속적으로 이루어져야 함을 시사하고 있다.

The purpose of this study is to empirically analyze the moderating effect of psychological empowerment on the relationship between technostress, the technology acceptance model, and the continuance intention of use. The results of the analyses are as follows: First, IT corporation workers' technostress had a negative effect on perceived ease of use and perceived usefulness. Second, psychological empowerment was found to regulate the relationship between technostress and the technology acceptance model. Third, the perceived ease of use of IT corporation workers had a significant positive effect on the continuance intention of use, and the perceived usefulness had a positive effect on the continuance intention of use. These findings imply that training and education should be continuously conducted to improve psychological empowerment as well as manage technostress.

키워드

Table 1. Demographic Information

JKOHBZ_2019_v9n8_27_t0001.png 이미지

Table 2. Descriptive Statistics and Correlations

JKOHBZ_2019_v9n8_27_t0002.png 이미지

Table 4. Results of Hypotheses Testing

JKOHBZ_2019_v9n8_27_t0003.png 이미지

Table 5. Results of the Moderation Effect

JKOHBZ_2019_v9n8_27_t0004.png 이미지

Table 3. The Results of Confirmatory Factor Analysis

JKOHBZ_2019_v9n8_27_t0005.png 이미지

참고문헌

  1. M. S. Yim & M. S. Park. (2015). An exploratory research on individual differences of technostress: In convergence age. Journal of Digital Convergence, 13(3), 137-153. DOI : 10.14400/JDC.2015.13.3.137
  2. H. O. Nho, Y. H. Kim & S. J. Hong. (2015). A study on technostress of information communication technology user. Journal of the Korea Convergence Society, 6(4), 41-46. DOI : 10.15207/JKCS.2015.6.4.041
  3. M. S. Yim. (2018). A study on the relationship between mobile technostress and quality of work life : Focusing on the role of coping strategies. Korean Management Consulting Review, 18(1), 165-187.
  4. H. J. Kim & J. Y. Rha. (2015). Is smartphone smart for everybody? A study of smartphone user typology. Journal of Digital Convergence, 13(1), 37-47. DOI : 10.14400/JDC.2015.13.1.37
  5. F. D. Davis. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319-340. DOI : 10.2307/249008
  6. S. Nakamoto. (2008). Bitcoin: A peer-to-peer electronic cash system.
  7. S. J. Kim. (2017). Block Chain Ecosystem Analysis and Implications. KISTEP Issue Paper, 9.
  8. C. Brod. (1984). Technostress: The human cost of the computer revolution (Vol. 13, p. 242). Reading, MA: Addison-Wesley.
  9. D. H. Caro & A. S. Sethi. (1985). Strategic management of technostress. Journal of Medical Systems, 9(5-6), 291-304. DOI : 10.1007/BF00992568
  10. T. S. Ragu-Nathan, M. Tarafdar, B. S. Ragu-Nathan & Q. Tu. (2008). The consequences of technostress for end users in organizations: Conceptual development and empirical validation. Information Systems Research, 19(4), 417-433. DOI : 10.1287/isre.1070.0165
  11. C. L. Cooper, C. P. Cooper, P. J. Dewe & M. P. O'Driscoll. (2001). Organizational stress: A review and critique of theory, research, and applications. Sage.
  12. M. Tarafdar, Q. Tu, B. S. Ragu-Nathan & T. S. Ragu-Nathan. (2007). The impact of technostress on role stress and productivity. Journal of Management Information Systems, 24(1), 301-328. DOI : 10.2753/MIS0742-1222240109
  13. R. Ayyagari, V. Grover & R. Purvis. (2011). Technostress: technological antecedents and implications. MIS Quarterly, 35(4), 831-858. https://doi.org/10.2307/41409963
  14. S. Ram. (1987). A model of innovation resistance. Advances in Consumer Research, 14, 208-212.
  15. V. Venkatesh, M. G. Morris, G. B. Davis & F. D. Davis. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 425-478. DOI : 10.2307/30036540
  16. E. M. Rogers. (2003). Diffusion of innovations Free Press. New York, 551.
  17. H. D. Moon & J. W. Kim. (2009). A study on the TAM (Technology Acceptance Model) in involuntary IT usage environment. Journal of Digital Convergence, 7(3), 13-24.
  18. V. Venkatesh & F. D. Davis. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. DOI : 10.1287/mnsc.46.2.186.11926
  19. K. W. Thomas & B. A. Velthouse. (1990). Cognitive elements of empowerment: An "interpretive" model of intrinsic task motivation. Academy of Management Review, 15(4), 666-681. https://doi.org/10.5465/AMR.1990.4310926
  20. J. A. Conger & R. N. Kanungo. (1988). The empowerment process: Integrating theory and practice. Academy of Management Review, 13(3), 471-482. https://doi.org/10.5465/amr.1988.4306983
  21. J. H. You & C. Park. (2010). A Comprehensive Review of Technology Acceptance Model Researches. Entrue Journal of Information Technology, 9(2), 31-50.
  22. P. S. Ellen, W. O. Bearden & S. Sharma. (1991). Resistance to technological innovations: an examination of the role of self-efficacy and performance satisfaction. Journal of the Academy of Marketing Science, 19(4), 297-307. DOI : 10.1007/BF02726504
  23. A. Alaiad & L. Zhou. (2014). The determinants of home healthcare robots adoption: An empirical investigation. International Journal of Medical Informatics, 83(11), 825-840. DOI : 10.1016/j.ijmedinf.2014.07.003
  24. A. Bhattacherjee & N. Hikmet. (2007). Physicians' resistance toward healthcare information technology: a theoretical model and empirical test. European Journal of Information Systems, 16(6), 725-737. DOI : 10.1057/palgrave.ejis.3000717
  25. G. M. Spreitzer. (1995). Psychological empowerment in the workplace: Dimensions, measurement, and validation. Academy of Management Journal, 38(5), 1442-1465. DOI : 10.5465/256865
  26. L. Hu & P. M. Bentler. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidiscipinary Journal, 6(1), 1-55. DOI : 10.1080/10705519909540118
  27. C. Fornell & D. F. Larcker. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. DOI : 10.1177/002224378101800104
  28. R. Agarwal & J. Prasad. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information Systems Research, 9(2), 204-215. DOI : 10.1287/isre.9.2.204
  29. C. W. D. Chen & C. Y. J. Cheng. (2009). Understanding consumer intention in online shopping: a respecification and validation of the DeLone and McLean model. Behaviour & Information Technology, 28(4), 335-345. DOI : 10.1080/01449290701850111