DOI QR코드

DOI QR Code

Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants

  • Islam, Mahfuzul (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University) ;
  • Lee, Sang-Suk (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University)
  • 투고 : 2019.03.07
  • 심사 : 2019.05.13
  • 발행 : 2019.05.31

초록

Methane, one of the important greenhouse gas, has a higher global warming potential than that of carbon dioxide. Agriculture, especially livestock, is considered as the biggest sector in producing anthropogenic methane. Among livestock, ruminants are the highest emitters of enteric methane. Methanogenesis, a continuous process in the rumen, carried out by archaea either with a hydrogenotrophic pathway that converts hydrogen and carbon dioxide to methane or with methylotrophic pathway, which the substrate for methanogenesis is methyl groups. For accurate estimation of methane from ruminants, three methods have been successfully used in various experiments under different environmental conditions such as respiration chamber, sulfur hexafluoride tracer technique, and the automated head-chamber or GreenFeed system. Methane production and emission from ruminants are increasing day by day with an increase of ruminants which help to meet up the nutrient demands of the increasing human population throughout the world. Several mitigation strategies have been taken separately for methane abatement from ruminant productions such as animal intervention, diet selection, dietary feed additives, probiotics, defaunation, supplementation of fats, oils, organic acids, plant secondary metabolites, etc. However, sustainable mitigation strategies are not established yet. A cumulative approach of accurate enteric methane measurement and existing mitigation strategies with more focusing on the biological reduction of methane emission by direct-fed microbials could be the sustainable methane mitigation approaches.

키워드

참고문헌

  1. Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC; 2014.
  2. Karakurt I, Aydin G, Aydiner K. Sources and mitigation of methane emissions by sectors: a critical review. Ren Energy 2012;39:40-8. https://doi.org/10.1016/j.renene.2011.09.006
  3. Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C. Livestock's long shadow: Environmental issues and options. Food and Agriculture Organization of the United Nations, Rome, Italy, 2006.
  4. Hristov AN, Oh J, Lee C, Meinen R, Montes F, Ott F, et al. Mitigation of greenhouse gas emissions in livestock production. In: Gerber PJ, Henderson B, Makkar HPS, editors. A review of options for non-$CO_2$ emissions. Rome: FAO; 2013. p 226.
  5. McAllister TA, Meale SJ, Valle E, Guan LL, Zhou M, Kelly WJ, et al. Ruminant nutrition symposium: use of genomics and transcriptomics to identify strategies to lower ruminal methanogenesis. J Anim Sci. 2015;93: 1431-49. https://doi.org/10.2527/jas.2014-8329
  6. Opio C, Gerber P, Mottet A, Falcucci A, Tempio G, MacLeod M, et al. Greenhouse gas emissions from ruminant supply chains - a global life cycle assessment. Rome, Italy: FAO; 2013.
  7. Johnson KA, Johnson DE. Methane emissions from cattle. J Anim Sci. 1995;73:2483-92. https://doi.org/10.2527/1995.7382483x
  8. Patra AK. Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions. Environ Monit Assess. 2012;184:1929-52. https://doi.org/10.1007/s10661-011-2090-y
  9. Moss AR, Jouany JP, Newbold CJ. Methane production by ruminants: its contribution to global warming. Ann Zootech. 2000;49:231-53. https://doi.org/10.1051/animres:2000119
  10. Beauchemin KA, Kreuzer M, O'Mara F, McAllister TA. Nutritional management for enteric methane abatement: a review. Aust J Exp Agric. 2008;48:21-7. https://doi.org/10.1071/EA07199
  11. Bodas R, Prieto N, Garcia-Gonzalez R, Andres S, Giraldez FJ, Lopez S. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim Feed Sci Technol 2012;176:78-93. https://doi.org/10.1016/j.anifeedsci.2012.07.010
  12. Cottle DJ, Nolan JV, Wiedemann SG. Ruminant enteric methane mitigation: a review. Anim Prod Sci 2011;51:491-514. https://doi.org/10.1071/AN10163
  13. De Mulder T, Peiren N, Vandaele L, Ruttink T, De Campeneere S, Van de Wiele T, et al. Impact of breed on the rumen microbial community composition and methane emission of Holstein Friesian and Belgian Blue heifers. Livest Sci. 2018;207:38-44. https://doi.org/10.1016/j.livsci.2017.11.009
  14. Eckard RJ, Grainger C, de Klein CAM. Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livest Sci. 2010;130:47-56. https://doi.org/10.1016/j.livsci.2010.02.010
  15. Giuburunca M, Criste A, Cocan D, Constantinescu R, Raducu C, Miresan V. Methane production in the rumen and its influence on global warming. ProEnviron. 2014;7:64-70.
  16. Goel G, Makkar HPS. Methane mitigation from ruminants using tannins and saponins. Trop. Anim health Prod. 2012;44:729-39. https://doi.org/10.1007/s11250-011-9966-2
  17. Haque MN. Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants. J Anim Sci Technol. 2018;60:15. https://doi.org/10.1186/s40781-018-0175-7
  18. Hristov AN, Kebreab E, Niu M, Oh J, Bannink A, Bayat AR, et al. Symposium review: uncertainties in enteric methane inventories, measurement techniques, and prediction models. J Dairy Sci. 2018;101:6655-74. https://doi.org/10.3168/jds.2017-13536
  19. Huhtanen P, Cabezas-Garcia EH, Utsumi S, Zimmerman S. Comparison of methods to determine methane emissions from dairy cows in farm conditions. J Dairy Sci. 2015;98:3394-409. https://doi.org/10.3168/jds.2014-9118
  20. Knapp JR, Laur GL, Vadas PA, Weiss WP, Tricarico JM. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J Dairy Sci. 2014;97:3231-61. https://doi.org/10.3168/jds.2013-7234
  21. Kumar S, Choudhury PK, Carro MD, Griffith GW, Dagar SS, Puniya M, et al. New aspects and strategies for methane mitigation from ruminants. Appl Microbiol Biotechnol. 2014;98:31-44. https://doi.org/10.1007/s00253-013-5365-0
  22. Leahy SC, Kelly WJ, Ronimus RS, Wedlock N, Altermann E, Attwood GT. Genome sequencing of rumen bacteria and archaea and its application to methane mitigation strategies. Animal. 2013;7:235-43. https://doi.org/10.1017/S1751731113000700
  23. Martin C, Morgavi DP, Doreau M. Methane mitigation in ruminants: from microbe to the farm scale. Animal. 2010;4:351-65. https://doi.org/10.1017/S1751731109990620
  24. Negussie E, de Haas Y, Dehareng F, Dewhurst R J, Dijkstra J, Gengler N, et al. Invited review: Large-scale indirect measurements for enteric methane emissions in dairy cattle: A review of proxies and their potential for use in management and breeding decisions. J Dairy Sci. 2017;100:2433-53. https://doi.org/10.3168/jds.2016-12030
  25. Patra A, Park T, Kim M, Yu Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J Anim Sci Biotechnol. 2017;8:13. https://doi.org/10.1186/s40104-017-0145-9
  26. Tapio I, Snelling TJ, Strozzi F, Wallace RJ. The ruminal microbiome associated with methane emissions from ruminant livestock. J Anim Sci Biotechnol. 2017;8:7. https://doi.org/10.1186/s40104-017-0141-0
  27. Islam M, Lee SS. Recent application technologies of rumen microbiome is the key to enhance feed fermentation. J Life Sci. 2018;28:1244-53. https://doi.org/10.5352/JLS.2018.28.10.1244
  28. Newbold CJ, de la Fuente G, Belanche A, Ramos-Morales E, McEwan NR. The role of ciliate protozoa in the rumen. Front Microbiol. 2015;6:1313. https://doi.org/10.3389/fmicb.2015.01313
  29. Orpin CG. Fungi in ruminant degradation. In: Agricultural science seminar: degradation of plant cell wall material. London: Agricultural Research Council; 1981. p. 129-50.
  30. Rezaeian M, Beakes GW, Parker DS. Distribution and estimation of anaerobic zoosporic fungi along the digestive tracts of sheep. Mycol Res. 2004;108:1227-33. https://doi.org/10.1017/S0953756204000929
  31. Janssen PH, Kirs M. Structure of the archaeal community of the rumen. Appl Environ Microbiol. 2008;74:3619-25. https://doi.org/10.1128/AEM.02812-07
  32. Hungate RE. Hydrogen as an intermediate in the rumen fermentation. Archiv Mikrobiol. 1967;59:158-64. https://doi.org/10.1007/BF00406327
  33. Berg MME, Yeoman CJ, Chia N, Tringe SG, Angly FE, Edwards RA, et al. Phage-bacteria relationships and CRISPR elements revealed by a metagenomic survey of the rumen microbiome. Environ Microbiol. 201;14:207-27. https://doi.org/10.1111/j.1462-2920.2011.02593.x
  34. Fouts DE, Szpakowski S, Purushe J, Torralba M, Waterman RC, MacNeil MD, et al. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen. PLOS ONE. 2012;7:e48289. https://doi.org/10.1371/journal.pone.0048289
  35. Gharechahi J, Salekdeh GH. A metagenomic analysis of the camel rumen's microbiome identifies the major microbes responsible for lignocelluloses degradation and fermentation. Biotechnol Biofuels. 2018;11:216. https://doi.org/10.1186/s13068-018-1214-9
  36. Kittelmann S, Seedorf H, Walters WA, Clemente JC, Knight R, Gordon JI, et al. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLOS ONE. 2013;8:e47879. https://doi.org/10.1371/journal.pone.0047879
  37. Zened A, Combes S, Cauquil L, Mariette J, Klopp C, Bouchez O, et al. Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets. FEMS Microbiol Ecol. 2013;83:504-14. https://doi.org/10.1111/1574-6941.12011
  38. Chen YB, Lan DL, Tangi C, Yang XN, Li J. Effect of DNA extraction methods on the apparent structure of yak rumen microbial communities as revealed by 16S rDNA sequencing. Pol J Microbiol. 2015;64:29-36. https://doi.org/10.33073/pjm-2015-004
  39. Iqbal MW, Zhang Q, Yang Y, Zou C, Li L, Liang X, et al. Ruminal fermentation and microbial community differently influenced by four typical subtropical forages in vitro. Anim Nutr. 2018;4:100-8. https://doi.org/10.1016/j.aninu.2017.10.005
  40. Jami E, White BA, Mizrahi I. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLOS ONE. 2014;9:e85423. https://doi.org/10.1371/journal.pone.0085423
  41. Comtet-Marre S, Parisot N, Lepercq P, Chaucheyras-Durand F, Mosoni P, Peyretaillade E, et al. Metatranscriptomics reveals the active bacterial and eukaryotic fibrolytic communities in the rumen of dairy cow fed a mixed diet. Front Microbiol. 2017;8:67.
  42. Deusch S, Camarinha-Silva A, Conrad J, Beifuss U, Rodehutscord M, Seifert J. A structural and functional elucidation of the rumen microbiome influenced by various diets and microenvironments. Front Microbiol. 2017;8:1605. https://doi.org/10.3389/fmicb.2017.01605
  43. Fuguang X, Xuemei N, Xiaohua P, Shanshan Z, Linshu J, Xiong B. Application of multi omics technologies in ruminants research. Dairy Vet Sci J. 2017;1:555563.
  44. Saleem F, Ametaj BN, Bouatra S, Mandal R, Zebeli Q, Dunn SM, et al. A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows. J Dairy Sci. 2012;95:6606-23. https://doi.org/10.3168/jds.2012-5403
  45. Saleem F, Bouatra S, Guo AC, Psychogios N, Mandal R, Dunn SM, et al. The bovine ruminal fluid metabolome. Metabolomics 2013;9:360-78. https://doi.org/10.1007/s11306-012-0458-9
  46. Ellis JL, Dijkstra J, Kebreab E, Bannink A, Odongo NE, McBride BW, et al. Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle. J Agric Sci. 2008;146:213-33. https://doi.org/10.1017/S0021859608007752
  47. Hill J, McSweeney C, Wright ADG, Bishop-Hurley G, Kalantar-zadeh K. Measuring methane production from ruminants. Trends Biotechnol. 2016;34:26-35. https://doi.org/10.1016/j.tibtech.2015.10.004
  48. Janssen PH. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim Feed Sci Technol. 2010;160:1-22. https://doi.org/10.1016/j.anifeedsci.2010.07.002
  49. Neill AR, Grime DW, Dawson RMC. Conversion of choline methyl groups through trimethylamine to methane in the rumen. Biochem J. 1978;170:529-35. https://doi.org/10.1042/bj1700529
  50. Poulsen M, Schwab C, Jensen BB, Engberg RM, Spang A, Canibe N, et al. Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat Commun. 2013;4:1428. https://doi.org/10.1038/ncomms2432
  51. Wallace RJ, Snelling TJ, McCartney CA, Tapio I, Strozzi F. Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism. Genet Sel Evol. 2017;49:9. https://doi.org/10.1186/s12711-017-0285-6
  52. Patra AK. Recent advances in measurement and dietary mitigation of enteric methane emissions in ruminants. Front Vet Sci. 2016;3:39. https://doi.org/10.3389/fvets.2016.00039
  53. Hammond KJ, Humphries DJ, Crompton LA, Green C, Reynolds CK. Methane emissions from cattle: estimates from short-term measurements using a GreenFeed system compared with measurements obtained using respiration chambers or sulphur hexafluoride tracer. Anim Feed Sci Technol. 2015;203:41-52. https://doi.org/10.1016/j.anifeedsci.2015.02.008
  54. Reynolds CK, Cammell SB, Humphries DJ, Beever DE, Sutton JD, Newbold JR. Effects of postrumen starch infusion on milk production and energy metabolism in dairy cows. J Dairy Sci. 2001;84:2250-9. https://doi.org/10.3168/jds.S0022-0302(01)74672-3
  55. Cammell SB, Thomson DJ, Beever DE, Haines MJ, Dhanoa MS, Spooner MC. The efficiency of energy utilization in growing cattle consuming fresh perennial ryegrass (Lolium perenne cv. Melle) or white clover (Trifolium repens cv. Blanca). Br J Nutr. 1986;55:669-80. https://doi.org/10.1079/BJN19860073
  56. Johnson KA, Huyler M, Westberg H, Lamb B, Zimmerman P. Measurement of methane emissions from ruminant livestock using a $SF_6$ tracer technique. Environ Sci Technol. 1994;28:359-62. https://doi.org/10.1021/es00051a025
  57. Zimmerman PR. System for measuring metabolic gas emissions from animals. United States Patent US 5,265,618. 30 Nov 1993.
  58. Rigby ML, Muhle J, Miller BR, Prinn RG, Krummel PB, Steele P, et al. History of atmospheric $SF_6$ emissions from 1973 to 2008. Atmos Chem Phys. 2010;10:10305-20. https://doi.org/10.5194/acp-10-10305-2010
  59. Lassey KR, Pinares-Patino CS, Martin RJ, Molano G, Mc-Millan AMS. Enteric methane emission rates determined by the $SF_6$ tracer technique: Temporal patterns and averaging periods. Anim Feed Sci Technol. 2011;166-167:183-91. https://doi.org/10.1016/j.anifeedsci.2011.04.066
  60. Pinares-Patino CS, Lassey KR, Martin RJ, Molano G, Fernandez M, MacLean S, et al. Assessment of the sulphur hexafluoride ($SF_6$) tracer technique using respiration chambers for estimation of methane emissions from sheep. Anim Feed Sci Technol. 2011;166:201-9. https://doi.org/10.1016/j.anifeedsci.2011.04.067
  61. Vlaming JB, Brookes IM, Hoskin SO, Pinares-Patino CS, Clark H. The possible influence of intra-ruminal sulphur hexafluoride release rates on calculated methane emissions from cattle. Can J Anim Sci. 2007;87:269-75. https://doi.org/10.4141/A06-056
  62. Hammond KJ, Muetzel S, Waghorn GC, Pinares-Patino CS, Burke JL, Hoskin SO. The variation in methane emissions from sheep and cattle is not explained by the chemical composition of ryegrass. Proc N Z Soc. Anim Prod. 2009;69:174-8.
  63. Hammond KJ, Hoskin SO, Burke JL, Waghorn GC, Koolaard JP, Muetzel S. Effects of feeding fresh white clover (Trifolium repens) or perennial ryegrass (Lolium perenne) on enteric methane emissions from sheep. Anim Feed Sci Technol. 2011;166-167:398-404. https://doi.org/10.1016/j.anifeedsci.2011.04.028
  64. Sun XZ, Hoskin SO, Muetzel S, Molano G, Clark H. Effect of forage chicory (Cichorium intybus) and perennial ryegrass (Lolium perenne) on methane emissions in vitro and from sheep. Anim Feed Sci Technol. 2011;166:391-7. https://doi.org/10.1016/j.anifeedsci.2011.04.027
  65. Sun XZ, Hoskin SO, Zhang GG, Molano G, Muetzel S, Pinares-Patino CS, et al. Sheep fed forage chicory (Cichorium intybus) or perennial ryegrass (Lolium perenne) have similar methane emissions. Anim Feed Sci Technol. 2012;172:217-25. https://doi.org/10.1016/j.anifeedsci.2011.11.007
  66. Waghorn GC, Tavendale MH, Woodfield DR. Methanogenesis from forages fed to sheep. Proc. N. Z. Grassl Assoc. 2002;64:167-71.
  67. Pinares-Patino CS, Machmuller A, Molano G, Smith A, Vlaming JB, Clark H. The $SF_6$ tracer technique for measurements of methane emission from cattle - effect of tracer permeation rate. Can J Anim Sci. 2008;88:309-20. https://doi.org/10.4141/CJAS07117
  68. Laubach J, Grover SP, Pinares-Patino CS, Molano G. A micrometeorological technique for detecting small differences in methane emissions from two groups of cattle. Atmospheric Environ. 2014;98:599-606. https://doi.org/10.1016/j.atmosenv.2014.09.036
  69. Hristov AN, Oh J, Giallongo F, Frederick T, Weeks H, Zimmerman PR, et al. The use of an automated system (Green- Feed) to monitor enteric methane and carbon dioxide emissions from ruminant animals. J Vis Exp. 2015;103:e52904.
  70. Washburn LE, Brody S. Growth and development XLII. Methane, hydrogen, and carbon dioxide production in the digestive tract of ruminants in relation to the respiratory exchange. In: Mumford FB, editors. Growth and development. Colombia, MO: University of Missouri;1937.
  71. Garnsworthy PC, Craigon J, Hernandez-Medrano JH, Saunders N. On-farm methane measurements during milking correlate with total methane production by individual dairy cows. J Dairy Sci. 2012;95:3166-80. https://doi.org/10.3168/jds.2011-4605
  72. Chagunda MG. Opportunities and challenges in the use of the Laser Methane Detector to monitor enteric methane emissions from ruminants. Animal 2013;7:394-400. https://doi.org/10.1017/S1751731113000724
  73. Troy SM, Duthie CA, Ross DW, Hyslop JJ, Roehe R, Waterhouse A, et al. A comparison of methane emissions from beef cattle measured using methane hoods with those measured using respiration chambers. Anim Feed Sci Technol. 2016;211:227-40. https://doi.org/10.1016/j.anifeedsci.2015.12.005
  74. Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, et al. Tackling climate change through livestock- a global assessment of emissions and mitigation opportunities. Rome, Italy: FAO; 2013.
  75. Olijhoek DW, Lovendahl P, Lassen J, Hellwing ALF, Hoglund JK, Weisbjerg MR, et al. Methane production, rumen fermentation, and diet digestibility of Holstein and Jersey dairy cows being divergent in residual feed intake and fed at 2 forage-to-concentrate ratios. J Dairy Sci. 2018;101:9926-40. https://doi.org/10.3168/jds.2017-14278
  76. Pinares-Patino CS, Ulyatt MJ, Lassey KR, Barry TN, Holmes CW. Persistence of differences between sheep in methane emission under generous grazing conditions. J Agric Sci. 2003;140:227-33. https://doi.org/10.1017/S0021859603003071
  77. Alford AR, Hegarty RS, Parnell PF, Cacho OJ, Herd RM, Griffith GR. The impact of breeding to reduce residual feed intake on enteric methane emission from the Australian beef industry. Aust J Exp Agric. 2006;46:813-20. https://doi.org/10.1071/EA05300
  78. Hegarty RS, Goopy JP, Herd RM, McCorkell B. Cattle selected for lower residual feed intake have reduced daily methane production. J Anim Sci. 2007;85:1479-86. https://doi.org/10.2527/jas.2006-236
  79. de Haas Y, Windig JJ, Calus MP, Dijkstra J, de Haan M, Bannink A, et al. Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection. J Dairy Sci. 2011;94:6122-34. https://doi.org/10.3168/jds.2011-4439
  80. Zhou M, Hernandez-Sanabria E, Guan LL. Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Appl Environ Microbiol. 2009;75:6524-33. https://doi.org/10.1128/AEM.02815-08
  81. Mwenya B, Santoso B, Sar C, Gamo Y, Kobayashi T, Arai I, et al. Effects of including ${\beta}$1-4 galacto-oligosaccharides, lactic acid bacteria or yeast culture on methanogenesis as well as energy and nitrogen metabolism in sheep. Anim Feed Sci Technol. 2004;115:313-26. https://doi.org/10.1016/j.anifeedsci.2004.03.007
  82. Sekine J, Kondo S, Okubo M, Asahida Y. Estimation of methane production in 6-week-weaned calves up to 25 weeks of age. Jap J Zootech Sci. 1986;57:300-4.
  83. Shibata M, Terada F, Iwasaki K, Kurihara M, Nishida T. Methane production in heifers, sheep and goats consuming diets of various hay-concentrate ratios. Anim Sci Technol. 1992;63:1221-7.
  84. Beever DE, Dhanoa MS, Losada HR, Evans RT, Cammell SB, France J. The effect of forage species and stage of harvest on the processes of digestion occurring in the rumen of cattle. Br J Nutr. 1986;56:439-54. https://doi.org/10.1079/BJN19860124
  85. Milich L. The role of methane in global warming: where might mitigation strategies be focused? Glob. Environ Chang. 1999;9:179-201. https://doi.org/10.1016/S0959-3780(98)00037-5
  86. Benchaar C, Pomar C, Chiquette J. Evaluation of dietary strategies to reduce methane production in ruminants: a modelling approach. Can J Anim Sci. 2001;81:563-74. https://doi.org/10.4141/A00-119
  87. Boadi DA, Wittenberg KM, Scott SL, Burton D, Buckley K, Small JA, et al. Effect of low and high forage diet on enteric and manure pack greenhouse gas emissions from a feedlot. Can J Anim Sci. 2004;84:445-53. https://doi.org/10.4141/A03-079
  88. Lovett D, Lovell S, Stack L, Callan J, Finlay M, Conolly J, et al. Effect of forage/concentrate ratio and dietary coconut oil level on methane output and performance of finishing beef heifers. Livest Prod Sci. 2003;84:135-146. https://doi.org/10.1016/j.livprodsci.2003.09.010
  89. Moss AR. Methane production by ruminants - Literature review of I. Dietary manipulation to reduce methane production and II. Laboratory procedures for estimating methane potential of diets. Nutr Abst Rev. (Series B) 1994;64:786-806.
  90. Doreau M, Chilliard Y. Digestion and metabolism of dietary fat in farm animals. Br J Nutr. 1997;78:15-35. https://doi.org/10.1079/BJN19970115
  91. Shibata M, Terada F. Factors affecting methane production and mitigation in ruminants. Anim Sci J. 2010;81:2-10. https://doi.org/10.1111/j.1740-0929.2009.00687.x
  92. Grainger C, Beauchemin KA. Can enteric methane emissions from ruminants be lowered without lowering their production? Anim Feed Sci Technol 2011;166-167:308-20. https://doi.org/10.1016/j.anifeedsci.2011.04.021
  93. Jenkins TC. Lipid-metabolism in the rumen. J Dairy Sci. 1993;76:3851-63. https://doi.org/10.3168/jds.S0022-0302(93)77727-9
  94. McGuffey RK, Richardson LF, Wilkinson JID. Ionophores for dairy cattle: current status and future outlook. J Dairy Sci. 2001;84:E194-203. https://doi.org/10.3168/jds.S0022-0302(01)70218-4
  95. Sauer FD, Fellner V, Kinsman R, Kramer JKG, Jackson HA, Lee AJ, et al. Methane output and lactation response in Holstein cattle with monensin or unsaturated fat added to the diet. J Anim Sci. 1998;76:906-14. https://doi.org/10.2527/1998.763906x
  96. O'Kelly JC, Spiers WG. Effect of monensin on methane and heat productions of steers fed lucerne hay either ad libitium or at the rate of 250 g/hour. Aust J Agric Res. 1992;43:1789-93. https://doi.org/10.1071/AR9921789
  97. McGinn SM, Beauchemin KA, Coates T, Colombatto D. Methane emissions from beef cattle: effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. J Anim Sci. 2004;82:3346-56. https://doi.org/10.2527/2004.82113346x
  98. Odongo NE, Bagg R, Vessie G, Dick P, Or-Rashid MM, Hook SE, et al. Long-term effects of feeding monensin on methane production in lactating dairy cows. J Dairy Sci. 2007;90:1781-8. https://doi.org/10.3168/jds.2006-708
  99. Guan H, Wittenberg KM, Ominski KH, Krause DO. Efficacy of ionophores in cattle diets for mitigation of enteric methane. J Anim Sci. 2006;84:1896-1906. https://doi.org/10.2527/jas.2005-652
  100. Biswas AA, Lee SS, Mamuad LL, Kim SH, Choi YJ, Lee C, et al. Effects of illite supplementation on in vitro and in vivo rumen fermentation, microbial population and methane emission of Hanwoo steers fed high concentrate diets. Anim Sci J. 2018;89:114-21. https://doi.org/10.1111/asj.12913
  101. Asanuma N, Iwamoto M, Hino T. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J Dairy Sci. 1999;.82:780-7. https://doi.org/10.3168/jds.S0022-0302(99)75296-3
  102. Lila ZA, Mohammed N, Tatsuoka N, Kanda S, Kurokawa Y, Itabashi H. Effect of cyclodextrin diallyl maleate on methane production, ruminal fermentation and microbes in vitro and in vivo. Anim Sci J. 2004;75:15-22. https://doi.org/10.1111/j.1740-0929.2004.00149.x
  103. Newbold CJ, Lopez S, Nelson N, Ouda JO, Wallace RJ, Moss AR. Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro. Br J Nutr. 2005;94:27-35. https://doi.org/10.1079/BJN20051445
  104. Castillo C, Benedito JL, Mendez J, Pereira V, Lopez-Alonso M, Miranda M, et al. Organic acids as a substitute for monensin in diets for beef cattle. Anim Feed Sci Technol. 2004;115:101-16. https://doi.org/10.1016/j.anifeedsci.2004.02.001
  105. Kolver ES, Aspin PW, Jarvis GN, Elborough KM, Roche JR. Fumarate reduces methane production pasture fermented in continuous culture. Proc N Z Soc Anim Prod. 2004;64:155-9.
  106. Beauchemin K, McGinn S. Methane emission from beef cattle: effects of fumaric acid, essential oil and canola oil. J Anim Sci. 2006;84:1489-96. https://doi.org/10.2527/2006.8461489x
  107. Chiquette J, Talbot G, Markwell F, Nili N, Forster RJ. Repeated ruminal dosing of Ruminococcus flavefaciens NJ along with a probiotic mixture in forage or concentrate-fed dairy cows: effect on ruminal fermentation, cellulolytic populations and in sacco digestibility. Can J Anim Sci. 2007;87:237-49. https://doi.org/10.4141/A06-066
  108. Jatkauskas J, Vrotniakien V. Effect of L-plantarum, Pediococcus acidilactici, Enterococcus faecium and L-lactis microbial supplementation of grass silage on the fermentation characteristics in the rumen of dairy cows. Vet Zootec. 2007;40:29-34.
  109. Jeyanathan J, Martin C, Morgavi DP. The use of direct-fed microbials for mitigation of ruminant methane emissions: a review. Animal 2014;8:250-61. https://doi.org/10.1017/S1751731113002085
  110. Baldwin RL, Wood WA, Emery RS. Conversion of glucose-C14 to propionate by the rumen microbiota. J Bacteriol. 1963;85:1346-9. https://doi.org/10.1128/JB.85.6.1346-1349.1963
  111. Russell JB, Wallace RJ. Energy-yielding and energy-consuming reactions. In: Hobson PN, Stewart CS, editors. The rumen microbial ecosystem. London, UK: Blackie Academic and Professional; 1997. p. 246-82.
  112. Seo JK, Kim SW, Kim MH, Upadhaya SD, Kam DK, Ha JK. Direct-fed microbials for ruminant animals. Asian-Australas J Anim Sci. 2010;23:1657-67. https://doi.org/10.5713/ajas.2010.r.08
  113. Ghorbani GR, Morgavi DP, Beauchemin KA, Leedle JAZ. Effects of bacterial direct-fed microbials on ruminal fermentation, blood variables, and the microbial populations of feedlot cattle. J Anim Sci. 2002;80:1977-85. https://doi.org/10.2527/2002.8071977x
  114. Adams MC, Luo J, Rayward D, King S, Gibson R, Moghaddam GH. Selection of a novel direct-fed microbial to enhance weight gain in intensively reared calves. Anim Feed Sci Technol. 2008;145:41-52. https://doi.org/10.1016/j.anifeedsci.2007.05.035
  115. Berger C, Lettat A, Martin C, Noziere P. Method for reducing methane production in a ruminant animal. United States Patent US 0,112,889. 24 Apr 2014.
  116. Mamuad L, Kim SH, Jeong CD, Choi YJ, Jeon CO, Lee SS. Effect of fumarate reducing bacteria on in vitro rumen fermentation, methane mitigation and microbial diversity. J Microbiol. 2014;52:120-8. https://doi.org/10.1007/s12275-014-3518-1
  117. Kim SH, Mamuad LL, Kim DW, Kim SK, Lee SS. Fumarate reductase-producing enterococci reduce methane production in rumen fermentation in vitro. J Microbiol Biotechnol. 2016;26:558-66. https://doi.org/10.4014/jmb.1512.12008
  118. Iwamoto M, Asanuma N, Hino T. Effect of nitrate combined with fumarate on methanogenesis, fermentation, and cellulose digestion by mixed ruminal microbes in vitro. Anim Sci J. 1999;70:471-8.
  119. Morris MP, Cancel B, Gonzalez-Mas A. Toxicity of nitrates and nitrites to dairy cattle. J Dairy Sci. 1958;41:694-6.
  120. Anderson RC, Rasmussen MA. Use of a novel nitrotoxin-metabolizing bacterium to reduce ruminal methane production. Biores Technol. 1998;64:89-95. https://doi.org/10.1016/S0960-8524(97)00184-3
  121. Asanuma N, Iwamoto M, Kawato M, Hino T. Numbers of nitratereducing bacteria in the rumen as estimated by competitive polymerase chain reaction. Anim Sci J. 2002;73:199-205. https://doi.org/10.1046/j.1344-3941.2002.00028.x
  122. Yoshii T, Asanuma N, Hino T. Number of nitrate- and nitrite-reducing Selenomonas ruminantium in the rumen, and possible factors affecting its growth. Anim Sci J. 2003;74:483-91. https://doi.org/10.1046/j.1344-3941.2003.00142.x
  123. Iwamoto M, Asanuma N, Hino T. Abilityof Selenomonas ruminantium, Veillonella parvula, and Wolinella succinogenes to reduce nitrate and nitrite with specia lreference to the suppression of ruminal methanogenesis. Anaerobe 2002;8:209-15. https://doi.org/10.1006/anae.2002.0428
  124. Campbell LL, Postgate JR. Classification of the spore-forming sulfatereducing bacteria. Bacteriol Rev. 1965;29:359-63. https://doi.org/10.1128/MMBR.29.3.359-363.1965
  125. Huisingh J, McNeill JJ, Matrone G. Sulfatereductionbya Desulfovibrio species isolated from sheep rumen. Appl Environ Microbiol. 1974;28:489-97. https://doi.org/10.1128/AEM.28.3.489-497.1974
  126. Paul SS, Deb SM, Singh D. Isolation and characterization of novel sulphate-reducing Fusobacterium sp. and their effects on in vitro methane emission and digestion of wheat straw by rumen fluid from Indian riverine buffaloes. Anim Feed Sci Technol. 2011;166-167:132-140. https://doi.org/10.1016/j.anifeedsci.2011.04.062
  127. Morvan B, Rieu-Lesme F, Fonty G, Gouet P. In vitro interactions between rumen H-2-producing cellulolytic microorganisms and H-2-utilizing acetogenic and sulfate-reducing bacteria. Anaerobe 1996;2:175-80. https://doi.org/10.1006/anae.1996.0023
  128. van Zijderveld SM, Gerrits WJJ, Apajalahti JA, Newbold JR, Dijkstra J, Leng RA, et al. Nitrate and sulfate: effective alternative hydrogen sinks for mitigation of rumina lmethane production in sheep. J Dairy Sci. 2010;93:5856-66. https://doi.org/10.3168/jds.2010-3281
  129. Mackie RI, Bryant MP. Acetogenesis and the rumen: syntrophic relationships. In Acetogenesis. Boston, MA: Springer; 1994. p. 331-64.
  130. Joblin KN. Ruminal acetogens and their potential to lower ruminant methane emissions. Aust J Agric Res. 1999;50:1307-14. https://doi.org/10.1071/AR99004
  131. Kim SH, Mamuad LL, Choi YJ, Sung HG, Cho KK, Lee SS. Effects of reductive acetogenic bacteria and lauric acid on in vivo ruminal fermentation, microbial populations, and methane mitigation in Hanwoo steers in South Korea. J Anim Sci. 2018;96:4360-67. https://doi.org/10.1093/jas/sky266
  132. Chaucheyras FG, Fonty G, Bertin G, Gouet P. In vitro $H_2$ utilization by a ruminal acetogenic bacterium cultivated alone or in association with an archaea methanogenis stimulated by a probiotic strain of Saccharomyces cerevisiae. Appl Environ Microbiol. 1995;61:3466-7. https://doi.org/10.1128/AEM.61.9.3466-3467.1995
  133. Lynch HA, Martin SA. Effects of Saccharomyces cerevisiae culture and Saccharomyces cerevisiae live cells on in vitro mixed ruminal microorganism fermentation. J Dairy Sci. 2002;85:2603-8. https://doi.org/10.3168/jds.S0022-0302(02)74345-2
  134. Frumholtz PP, Newbold CJ, Wallace RJ. Influence of Aspergillus oryzae fermentation extract on the fermentation of a basal ration in the rumen simulation technique (Rusitec). J Agric Sci. 1989;113:169-72. https://doi.org/10.1017/S002185960008672X
  135. Patra AK. An overview of antimicrobial properties of different classes of phytochemicals. In: Patra AK, editor. Diet phytochemicals and microbes: Dorrecht: Springer Netherlands; 2012. p.1-32.
  136. Cieslak A, Szumacher-Strabel M, Stochmal A, Oleszek W. Plant components with specific activities against rumen methanogens. Animal 2013;7:253-65. https://doi.org/10.1017/S1751731113000852
  137. Patra AK, Saxena J. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochem. 2010;71:1198-1222. https://doi.org/10.1016/j.phytochem.2010.05.010
  138. Joch M, Mrazek J, Skrivanova E, Cermak L, Marounek M. Effects of pure plant secondary metabolites on methane production, rumen fermentation and rumen bacteria populations in vitro. J Anim Physiol Anim Nutr. 2018;102:869-81. https://doi.org/10.1111/jpn.12910
  139. Maia MRG, Fonseca AJ, Oliveira HM, Mendonca C, Cabrita AR. The potential role of seaweeds in the natural manipulation of rumen fermentation and methane production. Sci Rep. 2016;6:32321. https://doi.org/10.1038/srep32321
  140. Hristov AN, Ivan M, Neill L, McAllister TA. Evaluation of several potential bioactive agents for reducing protozoal activity in vitro. Anim Feed Sci Technol. 2003;105:163-84. https://doi.org/10.1016/S0377-8401(03)00060-9
  141. Hu W, Wu Y, Liu J, Guo Y, Ye J. Tea saponins affect in vitro fermentation and methanogenesis in faunated and defaunated rumen fluiud. J Zhejiang Univ Sci B. 2005;6:787-92. https://doi.org/10.1631/jzus.2005.B0787
  142. Wina E, Muetzel S, Becker K. The impact of saponins or saponin-containing plant on ruminant production-a review. J Agric Food Chem. 2005;53:8093-105. https://doi.org/10.1021/jf048053d
  143. Patra AK, Yu Z. Effective reduction of enteric methane production by a combination of nitrate and saponin without adverse effect on feed degradability, fermentation, or bacterial and archaeal communities of the rumen. Bioresour Technol. 2013;148:352-60. https://doi.org/10.1016/j.biortech.2013.08.140
  144. Belanche A, Pinloche E, Preskett D, Newbold CJ. Effects and mode of action of chitosan and ivy fruit saponins on the microbiome, fermentation and methanogenesis in the rumen simulation technique. FEMS Microbiol Ecol. 2016;92:1.
  145. Cieslak A, Zmora P, Stochmal A, Pecio L, Oleszek W, Pers-Kamczyc E, et al. Rumen antimethanogenic effect of Saponaria officinalis L. phytochemicals in vitro. J Agric Sci. 2014;152:981-93. https://doi.org/10.1017/S0021859614000239
  146. Patra AK, Yu Z. Effects of vanillin, Quillaja saponin, and essential oils on in vitro fermentation and protein-degrading microorganisms of the rumen. Appl Microbiol Biotechnol. 2014;98:897-905. https://doi.org/10.1007/s00253-013-4930-x
  147. Patra AK, Yu Z. Effects of adaptation of in vitro rumen culture to garlic oil, nitrate, and saponin and their combinations on methanogenesis, fermentation, and abundances and diversity of microbial populations. Front Microbiol. 2015;6:1434. https://doi.org/10.3389/fmicb.2015.01434
  148. Ramirez-Restrepo CA, Tan C, O'Neill CJ, Lopez-Villalobos N, Padmanabha J, Wang JK, et al. Methane production, fermentation characteristics, and microbial profiles in the rumen of tropical cattle fed tea seed saponin supplementation. Anim Feed Sci Technol. 2016;216:58-67. https://doi.org/10.1016/j.anifeedsci.2016.03.005
  149. Patra AK, Min BR, Saxena J. Dietary tannins on microbial ecology of the gastrointestinal tract in ruminants. In: Patra AK, editor. Diet phytochem microbes. Dordrecht: Springer Netherlands; 2012. p. 237-262.
  150. Tavendale MH, Meagher LP, Pacheco D, Walker N, Attwood GT, Sivakumaran S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim Feed Sci Technol. 2005;123-124:403-419. https://doi.org/10.1016/j.anifeedsci.2005.04.037
  151. Puchala R, Animut G, Patra AK, Detweiler GD, Wells JE, Varel VH, et al. Methane emissions by goats consuming Sericea lespedeza at different feeding frequencies. Anim Feed Sci Technol. 2012;175:76-84. https://doi.org/10.1016/j.anifeedsci.2012.03.015
  152. Saminathan M, Sieo CC, Gan HM, Abdullah N, Wong CMVL, Ho YW. Effects of condensed tannin fractions of different molecular weights on population and diversity of bovine rumen methanogenic archaea in vitro, as determined by high-throughput sequencing. Anim Feed Sci Technol. 2016;216:146-60. https://doi.org/10.1016/j.anifeedsci.2016.04.005
  153. Tamminga S, Bannink A, Dijkstra J, Zom RLG. Feeding strategies to reduce methane loss in cattle. Lelystad: Animal Sciences Group; 2007. Report No.: 34.
  154. Ramirez-Restrepo CA, Barry TN. Alternative temperate forages containing secondary compounds for improving sustainable productivity in grazing ruminants. Anim Feed Sci Technol. 2005;120:179-201. https://doi.org/10.1016/j.anifeedsci.2005.01.015
  155. Newbold CJ, el Hassan SM, Wang J, Ortega ME, Wallace RJ. Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria. Br J Nutr. 1997;78:237-49. https://doi.org/10.1079/BJN19970143
  156. Greathead H. Plants and plant extracts for improving animal productivity. Proc Nutr Soc. 2003;62:279-90. https://doi.org/10.1079/PNS2002197
  157. Burt S. Essential oils: their antibacterial properties and potential applications in foods - a review. Int J Food Microbiol. 2004;94:223-53. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
  158. Benchaar C, Calsamiglia S, Chaves AV, Fraser GR, Colombatto D, McAllister TA, et al. A review of plant-derived essential oils in ruminant nutrition and production. Anim Feed Sci Technol. 2008;145:209-228. https://doi.org/10.1016/j.anifeedsci.2007.04.014
  159. Jouany JP, Morgavi DR. Use of 'natural' products as alternatives to antibiotic feed additives in ruminant production. Animal 2007;1:1443-66. https://doi.org/10.1017/S1751731107000742
  160. Newbold CJ, McIntosh FM, Williams P, Losa R, Wallace RJ. Effects of a specific blend of essential oil compounds on rumen fermentation. Anim Feed Sci Technol. 2004;114:105-12. https://doi.org/10.1016/j.anifeedsci.2003.12.006
  161. Lewis KA, Tzilivakis J, Green A, Warner DJ, Stedman A, Naseby D. Review of substances/agents that have direct beneficial effect on the environment: mode of action and assessment of efficacy. EFSA Supp Pub. 2013;10:440E.
  162. Rode LM, Yang WZ, Beauchemin KA. Fibrolytic enzyme supplements for dairy cows in early lactation. J Dairy Sci. 1999;82:2121-6. https://doi.org/10.3168/jds.S0022-0302(99)75455-X
  163. Arriola KG, Kim SC, Staples CR, Adesogan AT. Effect of fibrolytic enzyme application to low-and high-concentrate diets on the performance of lactating dairy cattle. J Dairy Sci. 2011;94:832-41. https://doi.org/10.3168/jds.2010-3424
  164. Holtshausen L, Chung YH, Gerardo-Cuervo H, Oba M, Beauchemin KA. Improved milk production efficiency in early lactation dairy cattle with dietary addition of a developmental fibrolytic enzyme additive. J Dairy Sci. 2011;94:899-907. https://doi.org/10.3168/jds.2010-3573
  165. Yang WZ, Beauchemin KA, Rode LM. A comparison of methods of adding fibrolytic enzymes to lactating cow diets. J Dairy Sci. 2000;83:2512-20. https://doi.org/10.3168/jds.S0022-0302(00)75143-5
  166. Zhou M, Chung YH, Beauchemin KA, Holtshausen L, Oba M, McAllister TA, et al. Relationship between rumen methanogens and methane production in dairy cows fed diets supplemented with a feed enzyme additive. J Appl Microbiol. 2011;111:1148-58. https://doi.org/10.1111/j.1365-2672.2011.05126.x
  167. Chung YH, Zhou M, Holtshausen L, Alexander TW, McAllister TA, Guan LL, et al. A fibrolytic enzyme additive for lactating Holstein cow diets: Ruminal fermentation, rumen microbial populations, and enteric methane emissions. J Dairy Sci. 2012;95:1419-27. https://doi.org/10.3168/jds.2011-4552
  168. Biswas AA, Lee SS, Mamuad LL, Kim SH, Choi YJ, Bae GS, et al. Use of lysozyme as a feed additive on in vitro rumen fermentation and methane emission. Asian Australas J Anim Sci. 2016;29:1601-7. https://doi.org/10.5713/ajas.16.0575
  169. Ushida K, Tokura M, Takenaka A, Itabashi H. Ciliate protozoa and ruminal methanogenesis. In: Onodera R, Itabashi H, Ushida K, Yano H, Sasaki Y, editors. Rumen microbes and digestive physiology in ruminants. Tokyo, Japan: Japan Scientific Societies Press; 1997. p. 209-20.
  170. Morgavi DP, Jouany JP, Martin C. Changes in methane emission and rumen fermentation parameters induced by refaunation in sheep. Aust J Exp Agric. 2008;48:69-72. https://doi.org/10.1071/EA07236
  171. Patra AK, Kamra DN, Agarwal N. Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Anim Feed Sci Technol. 2006;128:276-91. https://doi.org/10.1016/j.anifeedsci.2005.11.001
  172. Hegarty RS, Bird SH, Vanselow BA, Woodgate R. Effects of the absence of protozoa from birth or from weaning on the growth and methane production of lambs. Br J Nutr. 2008;100:1220-27. https://doi.org/10.1017/S0007114508981435
  173. Williams YJ, Rea SM, Popovski S, Pimm CL, Williams AJ, Toovey AF, et al. Reponses of sheep to a vaccination of entodinial or mixed rumen protozoal antigens to reduce rumen protozoal numbers. Br J Nutr. 2008;99:100-9. https://doi.org/10.1017/S0007114507801553

피인용 문헌

  1. Rumen Microbiome Composition Is Altered in Sheep Divergent in Feed Efficiency vol.11, 2019, https://doi.org/10.3389/fmicb.2020.01981
  2. Methanogenic Archaeal Census of Ruminal Microbiomes vol.21, pp.7, 2019, https://doi.org/10.5762/kais.2020.21.7.312
  3. Holstein and Jersey Steers Differ in Rumen Microbiota and Enteric Methane Emissions Even Fed the Same Total Mixed Ration vol.12, 2019, https://doi.org/10.3389/fmicb.2021.601061
  4. Seasonal Influence on Rumen Microbiota, Rumen Fermentation, and Enteric Methane Emissions of Holstein and Jersey Steers under the Same Total Mixed Ration vol.11, pp.4, 2019, https://doi.org/10.3390/ani11041184
  5. The Use of Temperate Tannin Containing Forage Legumes to Improve Sustainability in Forage-Livestock Production vol.11, pp.11, 2019, https://doi.org/10.3390/agronomy11112264
  6. Scope of Archaea in Fish Feed: a New Chapter in Aquafeed Probiotics? vol.13, pp.6, 2021, https://doi.org/10.1007/s12602-021-09778-4
  7. Exploring the Ruminal Microbial Community Associated with Fat Deposition in Lambs vol.11, pp.12, 2019, https://doi.org/10.3390/ani11123584
  8. Effect of Suckling Management and Ewe Concentrate Level on Methane-Related Carbon Footprint of Lamb Meat in Sardinian Dairy Sheep Farming vol.11, pp.12, 2019, https://doi.org/10.3390/ani11123605
  9. Methane Emissions from Ruminants in Australia: Mitigation Potential and Applicability of Mitigation Strategies vol.11, pp.4, 2021, https://doi.org/10.3390/ani11040951