DOI QR코드

DOI QR Code

The Effects of Soybean Cultivation on Soil Microorganism Activity

콩 재배가 토양 미생물 군집 활성도에 미치는 영향

  • Bak, Gyeryeong (Highland Agriculture Research Institute, National Institute of Crop Science) ;
  • Lee, Gyejun (Highland Agriculture Research Institute, National Institute of Crop Science) ;
  • Kim, Taeyoung (Highland Agriculture Research Institute, National Institute of Crop Science)
  • 백계령 (국립식량과학원 고령지농업연구소) ;
  • 이계준 (국립식량과학원 고령지농업연구소) ;
  • 김태영 (국립식량과학원 고령지농업연구소)
  • Received : 2019.04.22
  • Accepted : 2019.06.25
  • Published : 2019.06.30

Abstract

BACKGROUND: For sustainable agriculture, there are various agricultural practices including low input. Over the last few decades high input of chemical fertilizer and compounds results in environmental pollution and deterioration of soil fertility. Soybean (Glycine max L.) is well known eco-friendly crop due to their symbionts. Soybean has a relationship with nitrogen fixation bacteria called rhizobia. In this research work, we investigated effects of soybean cultivation on soil microorganism activities. METHODS AND RESULTS: Experiments were conducted in pots and potato cultivation was used as reference. Soil chemical properties were analyzed considering soil nutrient over cropping period. For the soil microbial community analysis, dehydrogenase activity analysis (DHA) analyzed along with denaturing gradient gel electrophoresis. The results showed that higher soil organic matter in the soybean cultivation soil than in the potato cultivation soil. Available $P_2O_5$ concentration increased gradually in both pots but showed higher value in the potato cultivation soil. DHA value implying microbial activities showed higher value in the soybean cultivation soil over all cropping period. CONCLUSION: The cause of high microbial activity in the soybean cultivation soil was considered to the effects of some specific microorganisms related to soybean cultivation. Therefore, the availability of soybean cultivation for sustainable agriculture should be encouraged in terms of microorganism community activity in soil.

저투입생산환경에서 콩 재배가 토양미생물군집활성도에 미치는 영향에 대한 결과는 다음과 같다. 초기 비료 및 퇴비 투입 후 유기물은 재배기간 내내 콩을 재배한 화분이 감자를 재배한 화분보다 높게 나타났으며, 토양 중 인산은 콩을 재배한 토양에 비해 감자를 재배한 토양에서 다소 높은 경향을 보였다. DHA 값은 콩을 재배한 토양이 생육기간 전반에 걸쳐 감자를 재배한 토양보다 유의하게 높게 나타나 토양미생물 활성도가 콩을 재배한 토양에서 증가됨을 알 수 있었고, 이러한 결과는 콩을 재배한 토양의 유기물함량 증가에도 영향을 미친것으로 판단된다. DGGE로 토양미생물군집을 분석한 결과 Proteobacteria 문(phylum)에 속하는 미생물들이 공통적으로 확인되었으며, 감자를 재배한 토양이 콩을 재배한 토양보다 다양한 미생물이 동정되었다. 또한, 콩 재배 토양의 높은 토양미생물활성도는 콩 재배 시 형성되는 소수의 특정한 미생물들에 의한 영향으로 판단된다.

Keywords

References

  1. Bai, Y., Zhou, X., & Smith, D. L. (2003). Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop science, 43(5), 1774-1781. https://doi.org/10.2135/cropsci2003.1774
  2. Baker, B. J., Sheik, C. S., Taylor, C. A., Jain, S., Bhasi, A., Cavalcoli, J. D., & Dick, G. J. (2013). Community transcriptomic assembly reveals microbes that contribute to deep-sea carbon and nitrogen cycling. The ISME journal, 7(10), 1962-1973. https://doi.org/10.1038/ismej.2013.85
  3. Barnett, B. A., Holm, D. G., Koym, J. W., Wilson, R. G., & Manter, D. K. (2015). Site and clone effects on the potato root-associated core microbiome and its relationship to tuber yield and nutrients. American Journal of Potato Research, 92(1), 1-9. https://doi.org/10.1007/s12230-014-9405-9
  4. Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13-66.
  5. Chaparro, J. M., Badri, D. V., & Vivanco, J. M. (2014). Rhizosphere microbiome assemblage is affected by plant development. The ISME journal, 8(4), 790-803. https://doi.org/10.1038/ismej.2013.196
  6. David M. S., Jeffry J. F., Peter G. H, & David A. Z. 2005. Principles and Applications of Soil Microbiology, p. 5, EDO University IYAMHO, USA.
  7. Dundore-Arias, J. P., Otto-Hanson, L. K., Rosen, C., & Kinkel, L. L. 2017. Potato crop yields and soil microbiome composition in response to nitrogen amendments in fumigated and non-fumigated soils. Phytopathology, 107(12), 117-118.
  8. Han H. S., & Lee K. D. (2005). Physiological responses of soybean - Inoculation of Bradyrhizobium japonicum with PGPR in Saline soil conditions. Research Journal of Agriculture and Biological Sciences, 1(3), 216-221.
  9. Heidari, G., Mohammadi, K., & Sohrabi, Y. (2016). Responses of soil microbial biomass and enzyme activities to tillage and fertilization systems in soybean (Glycine max L.) production. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2016.01730.
  10. Hungria, M., Araujo, R. S., Junior, S., Barbosa, E., & Zilli, J. E. (2017). Inoculum rate effects on the soybean symbiosis in new or old fields under tropical conditions. Agronomy Journal, 109(3), 1106-1112. https://doi.org/10.2134/agronj2016.11.0641
  11. Kuzmicheva, Y. V., Shaposhnikov, A. I., Petrova, S. N., Makarova, N. M., Tychinskaya, I. L., Puhalsky, J. V., Parahin, N. V., Tikhonovich, I. A., & Belimov, A. A. (2017). Variety specific relationships between effects of rhizobacteria on root exudation, growth and nutrient uptake of soybean. Plant and Soil, 419(1-2), 83-96. https://doi.org/10.1007/s11104-017-3320-z
  12. Lee, K. K., Mok, I. K., Yoon, M. H., Kim, H. J., & Chung, D. Y. (2012). Mechanisms of phosphate solubilization by PSB (Phosphate-solubilizing Bacteria) in soil. Korean Journal of Soil Science and Fertilizer, 45(2), 169-176. https://doi.org/10.7745/KJSSF.2012.45.2.169
  13. Lee, Y. M., Ahn, J. H., Choi, Y. M., Weon, H. Y., Yoon, J. H., & Song, J. K. (2015). Bacterial core community in soybean rhizosphere, The Korean Journal of Microbiology, 51(4). 347-354. https://doi.org/10.7845/kjm.2015.5052
  14. Lithourgidis, A. S., Dordas, C. A., Damalas, C. A., & Vlachostergios, D. N. (2011). Annual intercrops: an alternative pathway for sustainable agriculture. Australian Journal of Crop Science, 5(4), 396-410.
  15. Medes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J. H. M., Piceno, Y. M., DeSantis, T. Z., Andersen, G. L., Andersen, G. L., Bakker, P. A. H., & Raaijmakers, J. M. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332(6033), 1097-1100. https://doi.org/10.1126/science.1203980
  16. Pfeiffer, S., Mitter, B., Oswald, A., Schloter-Hai, B., Schloter, M., Declerck, S., & Sessitsch, A. (2016). Rhizosphere microbiomes of potato cultivated in the High Andes show stable and dynamic core microbiomes with different responses to plant development. FEMS microbiology ecology, 93(2), 1-12.
  17. Santos, V. B., Araujo, A. S. F., Leite, L. F. G., Nunes, L. A. P. L., & Melo, J. W. (2012). Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geoderma, 170, 227-231. https://doi.org/10.1016/j.geoderma.2011.11.007
  18. Sugiyama, A., Ueda, Y., Zushi, T., Takase, H., & Yazaki, K. (2014). Change in the bacterial community of soybean rhizospheres during growth in the field. PLoS One, 9(6), e100709. https://doi.org/10.1371/journal.pone.0100709
  19. Zhang, F., Dashti, N., Hynes, R. K., & Smith, D. L. (1996). Plant growth promoting rhizobacteria and soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Annals of Botany, 77(5), 453-460. https://doi.org/10.1006/anbo.1996.0055