DOI QR코드

DOI QR Code

Unit Root Test를 기반으로 한 장기 시계열 데이터의 Non-Stationary 발생에 따른 구조 변화 검정 및 시각화 연구

A Study on the Test and Visualization of Change in Structures Associated with the Occurrence of Non-Stationary of Long-Term Time Series Data Based on Unit Root Test

  • 투고 : 2018.12.17
  • 심사 : 2019.04.10
  • 발행 : 2019.07.31

초록

시계열의 구조 변화란, 전체 시계열 자료를 구성하는 기간에서 관측치들의 분포가 상대적으로 안정적이다가, 특정 시점에서 분포 특성의 급격한 변화를 보이는 것을 의미한다. 비정상(non-stationary) 장기 시계열 안에서도, 단기적인 추세의 변화가 일시적인 것인지, 아니면 구조적으로 변한 것인지를 적시에 판단하는 것은 중요하다. 이는 시계열 추세의 변화를 상시 감지하여, 변화에 맞는 적정한 대응을 할 필요가 있기 때문이다. 본 연구에서는 단위근 검정법을 기반으로 한 검정 결과를 시각화함으로써, 의사결정자가 시계열의 구조 변화를 손쉽게 파악할 수 있는 방안을 제시하였다. 특히 시계열을 분할한 후 검정하는 방법을 통해, 장기 시계열일 때에도 단기 구조 변화를 파악할 수 있도록 하였다.

Structural change of time series means that the distribution of observations is relatively stable in the period of constituting the entire time series data, but shows a sudden change of the distribution characteristic at a specific time point. Within a non-stationary long-term time series, it is important to determine in a timely manner whether the change in short-term trends is transient or structurally changed. This is because it is necessary to always detect the change of the time series trend and to take appropriate measures to cope with the change. In this paper, we propose a method for decision makers to easily grasp the structural changes of time series by visualizing the test results based on the unit root test. Particularly, it is possible to grasp the short-term structural changes even in the long-term time series through the method of dividing the time series and testing it.

키워드

JBCRJM_2019_v8n7_289_f0001.png 이미지

Fig. 1. Seasonal-trend Variation Decomposition using Loess by Cleveland et al.

JBCRJM_2019_v8n7_289_f0002.png 이미지

Fig. 2. Three Main Patterns of the Auto-correlation (A) The Case of Indicates that There is an Autoregressive Term in the Data, (B) The Case of Indicates that There is a Higher Order Autoregressive Term in the Data, (C) The Case of Indicates that There is a Moving Average Term in the Data

JBCRJM_2019_v8n7_289_f0003.png 이미지

Fig. 3. Changes due to Variation Elements of Time Series Data, (A) Long-term trend, (B) (A) with Cyclical Variations, (C) (B) and Seasonal Variations, (D) (C) with Random Variations

JBCRJM_2019_v8n7_289_f0004.png 이미지

Fig. 4. Short-term Structural Changes in Long-term Time Series. Short-term Trends before and after Structural Changes Tend to Change

JBCRJM_2019_v8n7_289_f0005.png 이미지

Fig 5. Procedure of Unit Root Test

JBCRJM_2019_v8n7_289_f0006.png 이미지

Fig. 6. Segmentation using Partial Data Length and Step Size of Time Series Data

JBCRJM_2019_v8n7_289_f0007.png 이미지

Fig. 7. Based on the Results of the unit Root Test, some Partial Data are Emphasized

JBCRJM_2019_v8n7_289_f0008.png 이미지

Fig. 8. Synthetic Data using the Base Model (n=35,040)

JBCRJM_2019_v8n7_289_f0009.png 이미지

Fig. 9. An Example of Type 1 Synthetic Data (n = 35,040, ξ = 1000)

JBCRJM_2019_v8n7_289_f0010.png 이미지

Fig. 10. An Example of Type 2 Synthetic Data (n = 35,040, ξ = 1000)

JBCRJM_2019_v8n7_289_f0011.png 이미지

Fig. 11. Power Consumption Data of Montenegro by ENTSO-E

JBCRJM_2019_v8n7_289_f0012.png 이미지

Fig. 12. Visualizations of Analysis of [A] Type 1(F), [B] Type 2(F) and [C] Type 3(B)

JBCRJM_2019_v8n7_289_f0013.png 이미지

Fig. 13. Power Consumption Data of Montenegro by ENTSO-E

JBCRJM_2019_v8n7_289_f0014.png 이미지

Fig. 14. Outliers and Structure Breaks Intuitively Confirmed from Power Consumption(kWh) Data of Montenegro by ENTSO-E

JBCRJM_2019_v8n7_289_f0015.png 이미지

Fig. 15. Visualizations of Analysis of Power Consumption(kWh) Data of Montenegro by ENTSO-E

Table 1. Definition of 5 Types Outliers

JBCRJM_2019_v8n7_289_t0001.png 이미지

Table 2. Parameters for analysis of Type 1(F), Type 2(F) and Type 3(B) (CV is critical value)

JBCRJM_2019_v8n7_289_t0002.png 이미지

Table 3. [A] IDX Gap of Results by Analysis and [B] Sum of IDX Gap of Results by 100 Times Analysis (right) for Type 1(F), Type 2(F) and Type 3(B)

JBCRJM_2019_v8n7_289_t0003.png 이미지

Table 4. Parameters for Power Consumption of Montenegro by ENTSO-E (CV is critical value)

JBCRJM_2019_v8n7_289_t0004.png 이미지

참고문헌

  1. Yong Dae Cho and Phil Sang Lee, "A Study on Estimating the Timing of Structural Change in the Common Stock Returns," Asian Review of Financial Research, Vol.14, No.2, pp.131-160, 2001.
  2. R. H. Hooker, "The Suspension of the Berlin Produce Exchange and Its Effect upon corn Prices," Journal of the Royal Statistical Society, Vol.64, No.4, pp.574-613, 1901. https://doi.org/10.2307/2979840
  3. J. Spencer, "On the Graduation of the Rates of Sickness and Mortality Presented by the Experience of the Manchester Unity of Odd fellows during the Period 1893-97," Journal of the Institute of Actuaries, Vol.38, No.4, pp.334-343, 1904. https://doi.org/10.1017/S0020268100008076
  4. V. O. Anderson and U. Nochmals, "The Elimination of Spurious Correlation due to Position in Time or Space," Biometrika, pp.269-279, 1914.
  5. F. R. Macauley, "The smoothing of time series," National Bureau of Economic Research, pp.121-136, 1930.
  6. M. T. Copeland, "Statistical Indices of Business Conditions," The Quarterly Journal of Economics, pp.522-562, 1915.
  7. R. B. Cleveland, W. S. Cleveland, J. E. McRae and I. Terpenning, "STL: A Seasonal-Trend Decomposition Procedure Based on Loess," Journal of Official Statistics, Vol.6, No.1, pp.3-73, 1990.
  8. Henry L. Gray, Chu-Ping C. Vijverberg and Wayne A. Woodward, "Nonstationary Data Analysis by Time Deformation," Communications in Statistics-Theory and Methods, Vol.34, No.1, pp.163-192, 2005. https://doi.org/10.1081/STA-200045869
  9. G. C. Chow and A. Lin, "Best Linear Unbiased Interolation, Distribution and Extrapolation of Time Series by Related Series," Review of Economics and Statistics, Vol.53, pp. 372-375, 1971. https://doi.org/10.2307/1928739
  10. F. T. Denton, "Adjustment of Monthly or Quarterly Series to Annual Totals: an Approach Based on Quadratic Minimization," Journal of American Statistical Association, Vol.66, pp.99-102, 1971. https://doi.org/10.1080/01621459.1971.10482227
  11. F. Wei, S. Liu, Y. Song, S. Pan, M. X. Zhou, W. Qian, L. Shi, L. Tan and Q. Zhang, "Tiara: a Visual Exploratory Text Analytic System," Proc. of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.153-162, 2010.
  12. N. Glance and M. H. Ruge, "Derving Marketing Intelligence from Online Discussion," Proc. of the 17th. ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp.419-428, 2005.
  13. P. Sawon, C. Subhankar and M. Rajdeep, "StationPlot: A New Non-stationarity Quantification Tool for Detection of Epileptic Seizures," IEEE Global Conference on Signal and Information Processing (IEEE GlobalSIP), 2018.
  14. CK. Vincent, Cheung, D. Karthik, S. Giacomo, T. Andrea and B. Paolo, "Decomposing Time Series Data by a Non-negative Matrix Factorization Algorithm with Temporally Constrained Coefficients," Conf. Proc. IEEE Eng. Med. Biol Soc. 2015. pp.3496-3499, 2015.
  15. L. B. Godfrey and M. S. Gashler, "Neural Decomposition of Time-series Data for Effective Generalization," IEEE Transactions on Neural Networks and Learning Systems, Vol.29, No.7, pp.2973-2985, 2018. https://doi.org/10.1109/tnnls.2017.2709324
  16. Component of Time Series Data [Internet], https://goo.gl/jgbTZN
  17. Bernhard Pfaff, "Analysis of Integrated and Cointegrated Time Series with R," 2nd ed., Springer, pp.63, 2008.
  18. D. A. Dickey and W. A. Fuller, "Distributions of the Estimators for Autoregressive Time Series with a Unit Root," Journal of the American Statistical Association, Vol.74, pp.427-431, 1979. https://doi.org/10.1080/01621459.1979.10482531
  19. P. C. B. Phillips and P. Perron, "Testing for a Unit Root in Time Series Regression," Biometrika. Vol.75, No.2, pp. 335-346, 1988. https://doi.org/10.1093/biomet/75.2.335
  20. Elliott G., T. J. Rothenberg, and J. H. Stock, "Efficient Tests for an Autoregressive unit Root," Econometrica, Vol.64, No.4, pp.813-836, 1996. https://doi.org/10.2307/2171846
  21. P. Schmidt and P. C. B. Phillips, "LM Tests for a unit Root in the Presence of Deterministic Trends," Oxford Bulletin of Economics and Statistics, Vol.54, No.3, pp.257-287, 1992. https://doi.org/10.1111/j.1468-0084.1992.tb00002.x
  22. D. Kwiatkowsk, P. C. B. Phillips, P. Schmidt, and Y. Shin, "Testing the Null Hypothesis of Stationarity Against the Alternative of a unit Root: How Sure are we that Economic Time Series have a unit Root?," Journal of Econometrics, Vol.54, pp.159-178, 1992. https://doi.org/10.1016/0304-4076(92)90104-Y
  23. D. R. Cox and A. Stuart, "Some Quick Sign Test for Trend in Location and Dispersion," Biometrika, Vol.42, pp.80-95, 1955. https://doi.org/10.1093/biomet/42.1-2.80