An investigation Of IntraFraction Motion Correction For Lung Stereotactic Body Radiation Therapy By Using IntraFraction Cone Beam Computed Tomography

폐암 환자의 정위적 체부 방사선 치료 시 IntraFraction CBCT를 이용한 치료 중 자세 오차 교정에 대한 고찰

  • Song, Hyeong Seok (Department Of Radiation Oncology, Yonsei University Yonsei Cancer Center) ;
  • Cho, Kang Chul (Department Of Radiation Oncology, Yonsei University Yonsei Cancer Center) ;
  • Park, Hyo Kuk (Department Of Radiation Oncology, Yonsei University Yonsei Cancer Center) ;
  • Yoon, Jong Won (Department Of Radiation Oncology, Yonsei University Yonsei Cancer Center) ;
  • Cho, Jung Hee (Department Of Radiation Oncology, Yonsei University Yonsei Cancer Center)
  • 송형석 (연세암병원 방사선종양학과) ;
  • 조강철 (연세암병원 방사선종양학과) ;
  • 박효국 (연세암병원 방사선종양학과) ;
  • 윤종원 (연세암병원 방사선종양학과) ;
  • 조정희 (연세암병원 방사선종양학과)
  • Published : 2019.06.29

Abstract

Purpose: The purpose is to correct for position errors caused by long treatment times. By correcting the target motion that can occur during lung SBRT using IntraFraction CBCT. Methods and materials: We analyzed retrospectively the IFM data of 14 patients with two treatment arc in the treatment plan for lung cancer with stereotactic radiotherapy. An IntraFraction Motion was applied to the Arccheck phantom to acquire the Gamma index data. Results : IntraFraction Motion during the first treatment arc is in the left-right(LR), superiorinferior(SI), anterior-posterior(AP) directions were $0.16{\pm}0.05cm$, 0.72 cm(max error), $0.2{\pm}0.14cm$, 1.26 cm, $0.24{\pm}0.08cm$, 0.82 cm and rotational directions was $0.84{\pm}0.23^{\circ}$, $2.8^{\circ}$(pitch), $0.72{\pm}0.23^{\circ}$, $2.5^{\circ}$(yaw), $0.7{\pm}0.19^{\circ}$, $2^{\circ}$(roll). IntraFraction Motion during the second treatment arc is in the LR, SI, AP directions were $0.1{\pm}0.04cm$, 0.37 cm, $0.14{\pm}0.17cm$, 2 cm, $0.12{\pm}0.04cm$, 0.5 cm and rotational directions was $0.45{\pm}0.12^{\circ}$, $1.3^{\circ}$, $0.37{\pm}0.1^{\circ}$, $1^{\circ}$, $0.35{\pm}0.1^{\circ}$, $1.2^{\circ}$. Gamma index pass rates were $82.64{\pm}10.51%$, 48.4 %. Conclusions : In this study, we examined the validity of IntraFraction Motion correction in lung SBRT and the efficiency of IntraFraction CBCT. Due to the nature of SBRT treatment, IFM may increase due to the increased treatment time. It is believed that the increase in IFM with the increase in treatment time can be improved with the use of FFF Beam and additional position correction using CBCT during treatment.

목 적: 폐암 환자의 정위적 체부 방사선 치료를 시행하는 동안 발생할 수 있는 표적의 움직임을 치료 중 CBCT를 사용하여 표적의 위치 변화를 재보정함으로써 긴 치료 시간에 의해 발생하는 치료 중 자세 오차를 교정하는데 목적이 있다. 대상 및 방법: 본원에서 시행한 폐암 정위적 체부 방사선 치료 시 치료 계획상 치료 Arc가 2개로 구성된 환자 14명의 데이터를 후향적으로 분석하였다. 치료 중 CBCT를 사용하여 영상을 획득하여 발생한 치료 중 자세 변화(IntraFraction Motion; IFM)를 분석하고 발생한 오차만큼 Arccheck 팬텀에 역으로 오차를 만들어 선량 분석을 실시하였다. 결 과: 첫번째 치료 중 CBCT의 Translation(x, y, z) 방향의 평균, 표준편차 그리고 최대 오차 값은 x(LR) 축에서 $0.16{\pm}0.05cm$, 0.72 cm, y(SI) 축에서 $0.2{\pm}0.14cm$, 1.26 cm, z(AP) 축에서 $0.24{\pm}0.08cm$, 0.82 cm로 나타났다. Rotation(x, y, z) 방향은 x(pitch) 축에서 $0.84{\pm}0.23^{\circ}$, $2.8^{\circ}$, y(yaw) 축에서 $0.72{\pm}0.23^{\circ}$, $2.5^{\circ}$, z(roll) 축에서 $0.7{\pm}0.19^{\circ}$, $2^{\circ}$로 나타났다. 두번째 치료 중 CBCT의 Translation(x, y, z) 방향의 평균, 표준편차 그리고 최대 오차 값은 x(LR) 축에서 $0.1{\pm}0.04cm$, 0.37 cm, y(SI) 축에서 $0.14{\pm}0.17cm$, 2 cm, z(AP) 축에서 $0.12{\pm}0.04cm$, 0.5 cm로 나타났다. Rotation(x, y, z) 방향은 x(pitch) 축에서 $0.45{\pm}0.12^{\circ}$, $1.3^{\circ}$, y(yaw) 축에서 $0.37{\pm}0.1^{\circ}$, $1^{\circ}$, z(roll) 축에서 $0.35{\pm}0.1^{\circ}$, $1.2^{\circ}$로 나타났다. IFM 값만큼 오차를 적용한 선량 비교에서 점 선량 값은 평균 $5.2{\pm}4.2%$의 차이가 발생했으며 감마 값은 $82.64{\pm}10.51%$로 나타났다. 결 론: 정위적 방사선 치료를 시행하는 폐암 환자의 있어서 치료 시간이 길어짐에 따라 발생하는 치료 중 자세오차의 크기를 줄이기 위해 개별 Arc CBCT를 사용해 추가적 자세 오차 교정을 하는 것이 치료 정확성과 효율성을 높일 것으로 사료된다.

Keywords

References

  1. Yali Shen, Hong Zhang, Jin Wang et al.: Hypofractionated radiotherapy for lung tumors with online cone beam CT guidance and active breathing control. Shen et al. Radiation Oncology 2010, 5:19. https://doi.org/10.1186/1748-717X-5-19
  2. WINNIE LI, B.SC., R.T.T., THOMAS G. PURDIE, PH.D., MOJGAN TAREMI, M.D., et al.: EFFECT OF IMMOBILIZATION AND PERFORMANCE STATUS ON INTRAFRACTION MOTION FOR STEREOTACTIC LUNG RADIOTHERAPY: ANALYSIS OF 133 PATIENTS. Int. J. Radiation Oncology Biol. Phys., Vol. 81, No. 5, pp. 1568-1575, 2011. https://doi.org/10.1016/j.ijrobp.2010.09.035
  3. CHIR AG SHAH, M.D., INGA S. GRILLS, M.D., LARRY L. KESTIN, M.D.,et al.: INTRAFRACTION VARIATION OF MEAN TUMOR POSITION DURING IMAGE-GUIDED HYPOFRACTIONATED STEREOTACTIC BODY RADIOTHERAPY FOR LUNG CANCER.: Int. J. Radiation Oncology Biol. Phys., Vol. 82, No. 5, pp. 1636-1641, 2012. https://doi.org/10.1016/j.ijrobp.2011.02.011
  4. Wataru Takahashi, MD, Hideomi Yamashita, MD, PhD, Satoshi Kida, MS, et al.: Verification of Planning Target Volume Settings in Volumetric Modulated Arc Therapy for Stereotactic Body Radiation Therapy by Using In-Treatment 4-Dimensional Cone Beam Computed Tomography. Int J Radiation Oncol Biol Phys, Vol. 86, No. 3, pp. 426e431, 2013. https://doi.org/10.1016/j.ijrobp.2013.02.019
  5. JEAN-PIERRE BISSONNETTE, PH.D., KEVIN N. FRANKS, M.D., THOMAS G. PURDIE, PH.D., et al: QUANTIFYING INTERFRACTION AND INTRAFRACTION TUMOR MOTION IN LUNG STER EOTACTIC BODY R ADIOTHER A PY USING RESPIRATION-CORRELATED CONE BEAM COMPUTED TOMOGRAPHY. Int. J. Radiation Oncology Biol. Phys., Vol. 75, No. 3, pp. 688-695, 2009. https://doi.org/10.1016/j.ijrobp.2008.11.066
  6. Fan Zhang, Chris R. Kelsey, David Yoo, et al.: Uncertainties of 4-dimensional computed tomography based tumor motion measurement for lung stereotactic body radiation therapy. Practical Radiation Oncology (2014) 4, e59-e65. https://doi.org/10.1016/j.prro.2013.02.009
  7. Xin Wang, Renming Zhong, Sen Bai, et al: Lung tumor reproducibility with active breath control (ABC) in image-guided radiotherapy based on cone-beam computed tomography with two registration methods. Radiotherapy and Oncology 99 (2011) 148-154. https://doi.org/10.1016/j.radonc.2011.05.020
  8. Ruijiang Li, PhD, Bin Han, PhD, Bowen Meng, MS, et al: Clinical Implementation of Intrafraction Cone Beam Computed Tomography Imaging During Lung Tumor Stereotactic Ablative Radiation Therapy. Int J Radiation Oncol Biol Phys, Vol. 87, No. 5, pp. 917e923, 2013. https://doi.org/10.1016/j.ijrobp.2013.08.015
  9. Vincent Caillet, Jeremy T. Booth, Paul Keall.: IGRT and motion management during lung SBRT delivery. Physica Medica 44 (2017) 113-122. https://doi.org/10.1016/j.ejmp.2017.06.006
  10. Marianne Camille Aznar, Samantha Warren, Mischa Hoogeman, et al.: The impact of technology on the changing practice of lung SBRT. Physica Medica 47 (2018) 129-138. https://doi.org/10.1016/j.ejmp.2017.12.020