References
- Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity", Struct. Eng. Mech., 48, 195-205. https://doi.org/10.12989/sem.2013.48.2.195.
- Arani, A.G., Maghamikia, S., Mohammadimehr, M. and Arefmanesh, A. (2011), "Buckling analysis of laminated composite rectangular plates reinforced by SWCNTs using analytical and finite element methods", J. Mech. Sci. Technol., 25, 809-820. https://doi.org/10.1007/s12206-011-0127-3.
- Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. and Lau, C.N. (2008), "Superior thermal conductivity of single-layer graphene", Nano Lett., 8, 902-907. https://doi.org/10.1021/nl0731872.
- Barati, M.R. and Zenkour, A.M. (2017), "Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection", Compos. Struct., 181, 194-202. https://doi.org/10.1016/j.compstruct.2017.08.082.
- Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19, 115-126. https://doi.org/10.12989/sss.2017.19.2.115.
- Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28, 19-30. https://doi.org/10.12989/was.2019.28.1.019.
- Ebrahimi, F. and Farazmandnia, N. (2017), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", Mech. Adv. Mater. Struct., 24, 820-829. https://doi.org/10.1080/15376494.2016.1196786.
- Ebrahimi, F. and Haghi, P. (2018), "A nonlocal strain gradient theory for scale-dependent wave dispersion analysis of rotating nanobeams considering physical field effects", Coupled Syst. Mech., 7, 373-393. https://doi.org/10.12989/CSM.2018.7.4.373
- Ebrahimi, F. and Rostami, P. (2018), "Wave propagation analysis of carbon nanotube reinforced composite beams", Europ. Phys. J. Plus, 133, 285. https://doi.org/10.1140/epjp/i2018-12069-y.
- Ebrahimi, F. and Barati, M.R. (2016a), "Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates based on nonlocal four-variable refined plate theory", J. Smart Nano Mater., 7(3), 1-25. https://doi.org/10.1080/19475411.2016.1223203.
- Ebrahimi, F. and Barati, M.R. (2016b), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, https://doi.org/10.1177/1077546316646239.
- Ebrahimi, F. and Barati, M.R. (2016c), "Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments", Appl. Phys. A, 122(10), 910. https://doi.org/10.1007/s00339-016-0441-9.
- Ebrahimi, F. and Barati, M.R. (2016d), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), https://doi.org/10.1088/0964-1726/25/10/105014.
- Ebrahimi, F. and Barati, M.R. (2016e), "Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field", J. Intelligent Mater. Syst. Struct., https://doi.org/10.1177/1045389X16672569.
- Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008
- Ebrahimi, F. and Dabbagh, A. (2016), "On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory", Compos. Struct., 162, https://doi.org/10.1016/j.compstruct.2016.11.058.
- Ebrahimi, F. and Hosseini, S.H.S. (2016a), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Thermal Stresses, 39(5), 606-625. https://doi.org/10.1080/01495739.2016.1160684.
- Ebrahimi, F. and Hosseini, S.H.S. (2016b), "Double nanoplate-based NEMS under hydrostatic and electrostatic actuations", Europe Phys. J. Plus, 131(5), 1-19. https://doi.org/10.1140/epjp/i2016-16160-1.
- Ebrahimi, F. and Barati, M.R. (2016f), "A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams", Arabian J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4.
- Ebrahimi, F. and Barati, M.R. (2016g), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", European Phys. J. Plus, 131(8), 279. https://doi.org/10.1140/epjp/i2016-16279-y.
- Ebrahimi, F. and Barati, M.R. (2016h), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18. https://doi.org/10.1007/s00339-016-0001-3.
- Ebrahimi, F. and Barati, M.R. (2016i), "A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment", Appl. Phys. A, 122(9), 792. https://doi.org/10.1007/s00339-016-0322-2.
- Ebrahimi, F. and Barati, M.R. (2016j), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001.
- Ebrahimi, F. and Barati, M.R. (2016k), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, https://doi.org/10.1016/j.compstruct.2016.09.092.
- Ebrahimi, F. and Barati, M.R. (2016l), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazilian Soc. Mech. Sci. Eng., 39(3), 1-16.
- Ebrahimi, F. and Barati, M.R. (2016m), "Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams", European Phys. J. Plus, 131(7), 1-14. https://doi.org/10.1140/epjp/i2016-16001-3
- Ebrahimi, F. and Barati, M.R. (2016n), "Buckling analysis of smart size-dependent higher order magneto-electro-thermo-elastic functionally graded nanosize beams", J. Mech., 1-11. https://doi.org/10.1017/jmech.2016.46.
- Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs)", Compos. Part B Eng., 110, 132-140. https://doi.org/10.1016/j.compositesb.2016.11.024.
- Formica, G., Lacarbonara, W. and Alessi, R. (2010), "Vibrations of carbon nanotube-reinforced composites", J. Sound Vib., 329, 1875-1889. https://doi.org/10.1016/j.jsv.2009.11.020.
- Fourn, H., Atmane, H.A., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27(1), 109-122. https://doi.org/10.12989/scs.2018.27.1.109.
- Gomez-Navarro, C., Burghard, M. and Kern, K. (2008), "Elastic properties of chemically derived single graphene sheets", Nano Lett., 8, 2045-2049. https://doi.org/10.1021/nl801384y.
- Hamza-Cherif, R., Meradjah, M., Zidour, M., Tounsi, A., Belmahi, S. and Bensattalah, T. (2018), "Vibration analysis of nano beam using differential transform method including thermal effect", Adv. Nano Res., 54, 1-14. https://doi.org/10.4028/www.scientific.net/JNanoR.54.1.
- Kant, T. and Babu, C. (2000), "Thermal buckling analysis of skew fibre-reinforced composite and sandwich plates using shear deformable finite element models", Compos. Struct., 49(1), 77-85. https://doi.org/10.1016/S0263-8223(99)00127-0.
- Lei, Z., Liew, K. and Yu, J. (2013), "Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method", Compos. Struct., 98, 160-168. https://doi.org/10.1016/j.compstruct.2012.11.006.
- Liew, K., Lei, Z., Yu, J. and Zhang, L. (2014), "Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach", Comput. Methods Appl. Mech. Eng., 268, 1-17. https://doi.org/10.1016/j.cma.2013.09.001.
- Liu, G., Chen, X. and Reddy, J. (2002), "Buckling of symmetrically laminated composite plates using the elementfree Galerkin method", J. Struct. Stability Dynam., 2(3), 281-294. https://doi.org/10.1142/S0219455402000634.
- Mikoushkin, V., Shnitov, V., Nikonov, S.Y., Dideykin, A., Vul, A. Y., Sakseev, D., Vyalikh, D. and Vilkov, O.Y. (2011), "Controlling graphite oxide bandgap width by reduction in hydrogen", Tech. Phys. Lett., 37, 942. https://doi.org/10.1134/S1063785011100257.
- Potts, J.R., Dreyer, D.R., Bielawski, C.W. and Ruoff, R.S. (2011), "Graphene-based polymer nanocomposites", Polymer, 52, 5-25. https://doi.org/10.1016/j.polymer.2010.11.042.
- Shan, L. and Qiao, P. (2005), "Flexural-torsional buckling of fiber-reinforced plastic composite open channel beams", Compos. Struct., 68(2), 211-224. https://doi.org/10.1016/j.compstruct.2004.03.015.
- Shariyat, M. (2010), "A generalized global-local high-order theory for bending and vibration analyses of sandwich plates subjected to thermo-mechanical loads", J. Mech. Sci., 52(3), 495-514. https://doi.org/10.1016/j.ijmecsci.2009.11.010.
- She, G.L., Yan, K.M., Zhang, Y.L., Liu, H.B. and Ren, Y.R. (2018a), "Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory", European Phys. J. Plus, 133, 368. https://doi.org/10.1140/epjp/i2018-12196-5.
- She, G.L., Yuan, F.G., Karami, B., Ren, Y.R. and Xiao, W.S. (2019), "On nonlinear bending behavior of FG porous curved nanotubes", J. Eng. Sci., 135, 58-74. https://doi.org/10.1016/j.ijengsci.2018.11.005.
- She, G.L., Yuan, F.G. and Ren, Y.R. (2018b), "On wave propagation of porous nanotubes", J. Eng. Sci., 130, 62-74. https://doi.org/10.1016/j.ijengsci.2018.05.002.
- She, G.L., Yuan, F.G., Ren, Y.R. and Xiao, W.S. (2017b), "On buckling and postbuckling behavior of nanotubes", J. Eng. Sci., 121, 130-142. https://doi.org/10.1016/j.ijengsci.2017.09.005.
- Shen, H.S. and Xiang, Y. (2012), "Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments", Comput. Methods Appl. Mech. Eng., 213, 196-205. https://doi.org/10.1016/j.cma.2011.11.025.
- Shen, H.S., Xiang, Y. and Lin, F. (2017a), "Nonlinear bending of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations in thermal environments", Compos. Struct., 170, 80-90. https://doi.org/10.1016/j.compstruct.2017.03.001.
- Shen, H.S., Xiang, Y. and Lin, F. (2017b), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments", Comput. Methods Appl. Mech. Eng., 319, 175-193. https://doi.org/10.1016/j.cma.2017.02.029.
- Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates", Mater. Design, 31(7), 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048.
- Shojaee, S., Valizadeh, N., Izadpanah, E., Bui, T. and Vu, T.V. (2012), "Free vibration and buckling analysis of laminated composite plates using the NURBS-based isogeometric finite element method", Compos. Struct., 94(5), 1677-1693. https://doi.org/10.1016/j.compstruct.2012.01.012.
- Sobhani, A., Saeedifar, M., Najafabadi, M.A., Fotouhi, M. and Zarouchas, D. (2018), "The study of buckling and post-buckling behavior of laminated composites consisting multiple delaminations using acoustic emission", Thin-Walled Struct., 127, 145-156. https://doi.org/10.1016/j.tws.2018.02.011.
- Song, M., Yang, J. and Kitipornchai, S. (2018), "Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Part B Eng., 134, 106-113. https://doi.org/10.1016/j.compositesb.2017.09.043.
- Suk, J.W., Piner, R.D., An, J. and Ruoff, R.S. (2010), "Mechanical properties of monolayer graphene oxide", ACS nano, 4, 6557-6564. https://doi.org/10.1021/nn101781v.
- Tornabene, F., Fantuzzi, N., Viola, E. and Carrera, E. (2014), "Static analysis of doubly-curved anisotropic shells and panels using CUF approach, differential geometry and differential quadrature method", Compos. Struct., 107, 675-697. https://doi.org/10.1016/j.compstruct.2013.08.038.
- Urthaler, Y. and Reddy, J. (2008), "A mixed finite element for the nonlinear bending analysis of laminated composite plates based on FSDT", Mech. Adv. Mater. Struct., 15(5), 335-354. https://doi.org/10.1080/15376490802045671.
- Wang, Q., Shi, D., Liang, Q. and Pang, F. (2017), "Free vibrations of composite laminated doubly-curved shells and panels of revolution with general elastic restraints", Appl. Math. Model., 46, 227-262. https://doi.org/10.1016/j.apm.2017.01.070.
- Wang, Z.X. and Shen, H.S. (2011), "Nonlinear vibration of nanotube-reinforced composite plates in thermal environments", Comput. Mater. Sci., 50, 2319-2330. https://doi.org/10.1016/j.commatsci.2011.03.005.
- Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028.
- Wu, H., Yang, J. and Kitipornchai, S. (2016), "Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections", Composites Part B Eng., 90, 86-96. https://doi.org/10.1016/j.compositesb.2015.12.007.
- Yang, J., Wu, H. and Kitipornchai, S. (2017), "Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams", Compos. Struct., 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048.
- Yas, M. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", J. Pressure Vessels Piping, 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012.
- Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M. S. A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015.
- Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmo ud, S. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519.
- Zhang, L., Lei, Z. and Liew, K. (2015), "Vibration characteristic of moderately thick functionally graded carbon nanotube reinforced composite skew plates", Compos. Struct., 122, 172-183. https://doi.org/10.1016/j.compstruct.2014.11.070.
- Zhang, Z., Li, Y., Wu, H., Zhang, H., Wu, H., Jiang, S. and Chai, G. (2018), "Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the firstorder shear deformation theory", Mech. Adv. Mater. Struct., 1-9. https://doi.org/10.1080/15376494.2018.1444216.
- Zhao, Z., Feng, C., Wang, Y. and Yang, J. (2017), "Bending and vibration analysis of functionally graded trapezoidal nanocomposite plates reinforced with graphene nanoplatelets (GPLs)", Compos. Struct., 180, 799-808. https://doi.org/10.1016/j.compstruct.2017.08.044.
- Zhen, W. and Wanji, C. (2006), "Free vibration of laminated composite and sandwich plates using global-local higher-order theory", J. Sound Vib., 298(1-2), 333-349. https://doi.org/10.1016/j.jsv.2006.05.022.
- Zhu, P., Lei, Z. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.
Cited by
- On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.389
- Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157
- Forced vibration analysis of a micro sandwich plate with an isotropic/orthotropic cores and polymeric nanocomposite face sheets vol.28, pp.3, 2019, https://doi.org/10.12989/cac.2021.28.3.259