참고문헌
- Alvarez, D.A., Uribe, F. and Hurtado, J.E. (2018), "Estimation of the lower and upper bounds on the probability of failure using subset simulation and random set theory", Mech. Syst. Signal Process, 100, 782-801. https://doi.org/10.1016/j.ymssp.2017.07.040.
- Au, S.K. and Beck, J.L. (1999), "A new adaptive importance sampling scheme for reliability calculations", Struct. Safety, 21(2), 135-158. https://doi.org/10.1016/S0167-4730(99)00014-4.
- Au, S.K. and Beck, J.L. (2001), "Estimation of small failure probabilities in high dimensions by subset simulation", Probabilistic Eng. Mech., 16(4), 263-277. https://doi.org/10.1016/S0266-8920(01)00019-4.
- Au, S.K. and Beck, J.L. (2003), "Subset simulation and its application to seismic risk based on dynamic analysis", J. Eng. Mech., 129(8), 901-917. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:8(901).
- Breitung, K. and Hohenbichler, M. (1989), "Asymptotic approximations for multivariate integrals with an application to multinormal probabilities", J. Multivariate Anal., 30(1), 80-97. https://doi.org/10.1016/0047-259X(89)90089-4.
- Bucher, C. and Most, T. (2008), "A comparison of approximate response functions in structural reliability analysis", Probabilistic Eng. Mech., 23(2), 154-163. https://doi.org/10.1016/j.probengmech.2007.12.022.
- Changcong, Z., Zhenzhou, L., Feng, Z. and Zhufeng, Y. (2015), "An adaptive reliability method combining relevance vector machine and importance sampling", Struct. Multidisciplinary Optimization, 52(5), 945-957. https://doi.org/10.1007/s00158-015-1287-z.
- Ching, J., Au, S.K. and Beck, J.L. (2005), "Reliability estimation for dynamical systems subject to stochastic excitation using subset simulation with splitting", Comput. Method Appl. Mech. Eng., 194(12-16), 1557-1579. https://doi.org/10.1016/j.cma.2004.05.028.
- Chojaczyk, A., Teixeira, A., Neves, L., Cardoso, J. and Soares, C.G. (2015), "Review and application of Artificial Neural Networks models in reliability analysis of steel structures", Struct. Safety, 52, 78-89. https://doi.org/10.1016/j.strusafe.2014.09.002.
- Chojaczyk, A., Teixeira, A., Neves, L.C., Cardoso, J. and Soares, C.G. (2015), "Review and application of artificial neural networks models in reliability analysis of steel structures", Struct. Safety, 52, 78-89. https://doi.org/10.1016/j.strusafe.2014.09.002.
- Dai, H., Zhang, H., Wang, W. and Xue, G. (2012), "Structural Reliability Assessment by Local Approximation of Limit State Functions Using Adaptive Markov Chain Simulation and Support Vector Regression", Comput. Aid Civil Infrastruct. Eng., 27(9), 676-686. https://doi.org/10.1111/j.1467-8667.2012.00767.x.
- Der Kiureghian, A., Lin, H. and Hwang, S. (1987), "Second-Order Reliability Approximations", J. Eng. Mech., 113(8), 1208-1225. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:8(1208).
- Echard, B., Gayton, N. and Lemaire, M. (2011), "AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation", Struct. Safety, 33(2), 145-154. https://doi.org/10.1016/j.strusafe.2011.01.002.
- Echard, B., Gayton, N., Lemaire, M. and Relun, N. (2013), "A combined importance sampling and kriging reliability method for small failure probabilities with time-demanding numerical models", Raliability Eng. Syst. Safety, 111, 232-240. https://doi.org/10.1016/j.ress.2012.10.008.
- Elhewy, A.H., Mesbahi, E. and Pu, Y. (2006), "Reliability analysis of structures using neural network method", Probabilistic Eng. Mech., 21(1), 44-53. https://doi.org/10.1016/j.probengmech.2005.07.002.
- Fang, Y. and Tee, K.F. (2017), "Structural reliability analysis using response surface method with improved genetic algorithm", Struct. Eng. Mech., 62(2), 139-142. https://doi.org/10.12989/sem.2017.62.2.139.
- Gandomi, A.H., Alavi, A.H., Arjmandi, P., Aghaeifar, A. and Seyednour, R. (2010), "Genetic programming and orthogonal least squares: a hybrid approach to modeling the compressive strength of CFRP-confined concrete cylinders", J. Mech. Mater. Struct., 5(5), 735-753. http://dx.doi.org/10.2140/jomms.2010.5.735.
- Gao, L., Xiao, M., Shao, X., Jiang, P., Nie, L. and Qiu, H. (2012), "Analysis of gene expression programming for approximation in engineering design", Struct. Multidisciplinary Optimization, 46(3), 399-413. https://doi.org/10.1007/s00158-012-0767-7.
- Gaspar, B., Naess, A., Leira, B.J. and Soares, C.G. (2014), "System reliability analysis by Monte Carlo based method and finite element structural models", J. Offshore Mech. Arctic Eng., 136(3), 031603-031603. https://doi.org/10.1115/1.4025871.
- Giovanis, D.G., Papaioannou, I., Straub, D. and Papadopoulos, V. (2017), "Bayesian updating with subset simulation using artificial neural networks", Comput. Method Appl. Mech. Eng., 319, 124-145. https://doi.org/10.1016/j.cma.2017.02.025.
- Goda, K. and Atkinson, G.M. (2010), "Intraevent spatial correlation of ground-motion parameters using SK-net data", Bullet. Seismologic. Soc. America, 100(6), 3055-3067. https://doi.org/10.1785/0120100031.
- Haario, H., Saksman, E. and Tamminen, J. (2001), "An adaptive Metropolis algorithm", Bernoulli, 223-242. https://doi.org/10.2307/3318737
- Hasofer., A.M. and Lind, M.C. (1974), "An exact and invariant first order reliability format", J. Eng. Mech., 100, 111-121.
- Hohenbichler, M. and Rackwitz, R. (1988), "Improvement of second-order reliability estimates by importance sampling", J. Eng. Mech., 114(12), 2195-2199. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:12(2195).
- Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8.
- Huang, X., Chen, J. and Zhu, H. (2016), "Assessing small failure probabilities by AK-SS: an active learning method combining Kriging and subset simulation", Struct. Safety, 59, 86-95. https://doi.org/10.1016/j.strusafe.2015.12.003.
- Hurtado, J. and Alvarez, D. (2003), "Classification Approach for Reliability Analysis with Stochastic Finite-Element Modeling", J. Struct. Eng., 129(8), 1141-1149. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:8(1141).
- Hurtado, J.E. and Alvarez, D.A. (2001), "Neural-network-based reliability analysis: a comparative study", Comput. Method Appl. Mech. Eng., 191(1-2), 113-132. https://doi.org/10.1016/S0045-7825(01)00248-1.
- Kaymaz, I. (2005), "Application of kriging method to structural reliability problems", Struct. Safety, 27(2), 133-151. https://doi.org/10.1016/j.strusafe.2004.09.001.
- Kmiecik, M. and Soares, C.G. (2002), "Response surface approach to the probability distribution of the strength of compressed plates", Marine Struct., 15(2), 139-156. https://doi.org/10.1016/S0951-8339(01)00024-7.
- Koza, J.R. (1992), Genetic programming: On the Programming of Computers by Means of Natural Selection, The MIT Press, MA, USA.
- Li, H., Lu, Z. and Yue, Z. (2006), "Support vector machine for structural reliability analysis", Appl. Math. Mech., 27(10), 1295-1303. https://doi.org/10.1007/s10483-006-1001-z.
- Li, L. (2012), Sequential Design of Experiments to Estimate a Probability of Failure, Supelec, France.
- Liu, H., Ong, Y.S. and Cai, J. (2017), "A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design", Struct. Multidisciplinary Optimization, 1-24. https://doi.org/10.1007/s00158-017-1739-8.
- Liu, P.L. and Der Kiureghian, A. (1991), "Optimization algorithms for structural reliability", Struct. Safety, 9(3), 161-177. https://doi.org/10.1016/0167-4730(91)90041-7
- Liu, X., Wu, Y., Wang, B., Ding, J. and Jie, H. (2017), "An adaptive local range sampling method for reliability-based design optimization using support vector machine and Kriging model", Struct. Multidisciplinary Optimization, 55(6), 2285-2304. https://doi.org/10.1007/s00158-016-1641-9.
- Matheron, G. (1973), "The intrinsic random functions and their applications", Adv. Appl. Probability, 439-468. https://doi.org/10.2307/1425829.
- McCulloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", Bullet. Math. Biophys., 5(4), 115-133. https://doi.org/10.1007/BF02478259.
- Metropolis, N., Rosenbluth, A.W., Ronsenbluth, M.N., Teller, A.H. and Teller, E. (1953), "Equations of state calculations by fast computing machines", J. Chem. Phys., 21, 1087-1092. https://doi.org/10.1063/1.1699114.
- Pan, Q. and Dias, D. (2017), "An efficient reliability method combining adaptive support vector machine and Monte Carlo simulation", Struct. Safety, 67, 85-95. https://doi.org/10.1016/j.strusafe.2017.04.006.
- Parsons, R. and Canfield, S. (2002), "Developing genetic programming techniques for the design of compliant mechanisms", Struct. Multidisciplinary Optimization, 24(1), 78-86. https://doi.org/10.1007/s00158-002-0216-0.
- Pradlwarter, H., Schueller, G., Koutsourelakis, P. and Charmpis, D. (2007), "Application of line sampling simulation method to reliability benchmark problems", Struct. Safety, 29(3), 208-221. https://doi.org/10.1016/j.strusafe.2006.07.009.
- Rackwitz, R. and Flessler, B. (1978), "Structural reliability under combined random load sequences", Comput. Struct., 9(5), 489-494. https://doi.org/10.1016/0045-7949(78)90046-9.
- Rahman, S. and Wei, D. (2006), "A univariate approximation at most probable point for higher-order reliability analysis", J. Solid Struct., 43(9), 2820-2839. https://doi.org/10.1016/j.ijsolstr.2005.05.053.
- Robert, C. and Casella, G. (2004), Monte Carlo Statistical Methods, Vol. 319, Springer, Germany.
- Sacks, J., W. J. Welch, Mitchell, T.J. and Wynn., H.P. (1989), "Design and analysis of computer experiments", Statistical Sci., 4(4), 409-435. https://doi.org/10.1214/ss/1177012413
- Schueremans, L. and Van Gemert, D. (2005), "Benefit of splines and neural networks in simulation based structural reliability analysis", Struct. Safety, 27(3), 246-261. https://doi.org/10.1016/j.strusafe.2004.11.001.
- Schueremans, L. and Van Gemert, D. (2005). "Use of Kriging as Meta-model in simulation procedures for structural reliability", International Conference on Struct. Safety and Reliability, Rome, Italy, June.
- Searson, D.P., Leahy, D.E. and Willis, M.J. (2010). "GPTIPS: an open source genetic programming toolbox for multigene symbolic regression", Proceedings of the International Multiconference of Engineers and Computer Scientists, Hong Kong, March.
- Searson, D.P., Willis, M.J. and Montague, G. (2007), "Co-evolution of non-linear PLS model components", J. Chemometrics, 21(12), 592-603. https://doi.org/10.1002/cem.1084.
- Shanmugam, K. and Balaban, P. (1980), "A modified Monte-Carlo simulation technique for the evaluation of error rate in digital communication systems", IEEE Transactions on Communications, 28(11), 1916-1924. https://doi.org/10.1109/TCOM.1980.1094613.
- Song, H., Choi, K.K., Lee, I., Zhao, L. and Lamb, D. (2013), "Adaptive virtual support vector machine for reliability analysis of high-dimensional problems", Struct. Multidisciplinary Optimization, 47(4), 479-491. https://doi.org/10.1007/s00158-012-0857-6.
- Tan, X.-h., Bi, W.-h., Hou, X.-l. and Wang, W. (2011), "Reliability analysis using radial basis function networks and support vector machines", Comput. Geotech., 38(2), 178-186. https://doi.org/10.1016/j.compgeo.2010.11.002.
- Teixeira, A.P. and Soares, C.G. (2010), Response Surface Reliability Analysis of Steel Plates with Random Fields of Corrosion, Taylor & Francis Group, London, United Kingdom.
- Tvedt, L. (1990), "Distribution of Quadratic Forms in Normal Space - Application to Structural Reliability", J. Eng. Mech., 116(6), 1183-1197. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:6(1183).
- Valdebenito, M., Jensen, H., Hernandez, H. and Mehrez, L. (2018), "Sensitivity estimation of failure probability applying line sampling", Raliability Eng. Syst. Safety, 171, 99-111. https://doi.org/10.1016/j.ress.2017.11.010.
- Waarts, P. (2000), "Structural reliability using finite element methods", An appraisal of DARS: Directional Adaptive, 515.
- Xiang, H., Li, Y., Liao, H. and Li, C. (2017), "An adaptive surrogate model based on support vector regression and its application to the optimization of railway wind barriers", Struct. Multidisciplinary Optimization, 55(2), 701-713. https://doi.org/10.1007/s00158-016-1528-9.
- Yeun, Y., Kim, B., Yang, Y. and Ruy, W. (2005), "Polynomial genetic programming for response surface modeling part 2: adaptive approximate models with probabilistic optimization problems", Struct. Multidisciplinary Optimization, 29(1), 35-49. https://doi.org/10.1007/s00158-004-0461-5.
- Yuan, X., Lu, Z., Zhou, C. and Yue, Z. (2013), "A novel adaptive importance sampling algorithm based on Markov chain and low-discrepancy sequence", Aerospace Sci. Technol., 29(1), 253-261. https://doi.org/10.1016/j.ast.2013.03.008.
- Zhao, H., Ru, Z., Chang, X., Yin, S. and Li, S. (2014), "Reliability analysis of tunnel using least square support vector machine", Tunnelling Underground Space Technol., 41, 14-23. https://doi.org/10.1016/j.tust.2013.11.004.
- Ziha, K. (1995), "Descriptive sampling in Structural Safety", Struct. Safety, 17(1), 33-41. https://doi.org/10.1016/0167-4730(94)00038-R.