References
- Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001;157:1819-29. https://doi.org/10.1093/genetics/157.4.1819
- Hayes B, Bowman P, Chamberlain A, Verbyla K, Goddard M. Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genet Sel Evol 2009;41:51. https://doi.org/10.1186/1297-9686-41-51
- Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, Lawlor TJ. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J Dairy Sci 2010;93:743-52. https://doi.org/10.3168/jds.2009-2730
- Jattawa D, Elzo MA, Koonawootrittriron S, Suwanasopee T. Comparison of genetic evaluations for milk yield and fat yield using a polygenic model and three genomic-polygenic models with different sets of SNP genotypes in Thai multibreed dairy cattle. Livest Sci 2015;181:58-64. https://doi.org/10.1016/j.livsci.2015.10.008
- Weigel KA, de los Campos G, Gonzalez-Recio O, et al. Predicting ability of direct genomic values for lifetime net merit of Holstein sires using selected subsets of single nucleotide polymorphism markers. J Dairy Sci 2009;92:5248-57. https://doi.org/10.3168/jds.2009-2092
- Moser G, Khatkar MS, Hayes BJ, Raadsma HW. Accuracy of direct genomic values in Holstein bulls and cows using subsets of SNP markers. Genet Sel Evol 2010;42:37. https://doi.org/10.1186/1297-9686-42-37
- Koonawootrittriron S, Elzo MA, Thongprapi T. Genetic trends in a Holstein x other breeds multibreed dairy population in Central Thailand. Livest Sci 2009;122:186-92. https://doi.org/10.1016/j.livsci.2008.08.013
- Sargent FD, Lytton VH, Wall OG. Test interval method of calculating dairy herd improvement association records. J Dairy Sci 1968;51:170-9. https://doi.org/10.3168/jds.S0022-0302(68)86943-7
- Koonawootrittriron S, Elzo MA, Tumwasorn S, Sintala W. Prediction of 100-d and 305-d milk yields in a multibreed dairy herd in Thailand using monthly test-day records. Thai J Agric Sci 2001;34:163-74.
- TMD. The climate of Thailand. Bangkok, Thailand: Thai Meteorological Department. Available from: https://www.tmd. go.th/en/archive/thailand_climate.pdf
- Sargolzaei M, Chesnais JP, Schenkel FS. A new approach for efficient genotype imputation using information from relatives. BMC Genomics 2014;15:478. https://doi.org/10.1186/1471-2164-15-478
- Wang H, Misztal I, Aguilar I, Legarra A, Muir WM. Genomewide association mapping including phenotypes from relatives without genotypes. Genet Res 2012;94:73-83. https://doi.org/10.1017/S0016672312000274
- Misztal I, Tsuruta S, Lourenco D, Aguilar I, Legarra A, Vitezica Z. Manual for BLUPF90 family of programs. Athens, GA, USA: University of Georgia, 2018 [cited 2018 June 19]. Available from: http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all7.pdf
- Misztal I, Legarra A, Aguilar I. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J Dairy Sci 2009;92:4648-55. https://doi.org/10.3168/jds.2009-2064
- Tsuruta S. Average Information REML with several options including EM-REML and heterogeneous residual variances; 2014 [cited 2018 June 19]. Available from: http://nce.ads.uga.edu/wiki/doku.php?id=application_programs
- Legarra A, Aguilar I, Misztal I. A relationship matrix including full pedigree and genomic information. J Dairy Sci 2009;92:4656-63. https://doi.org/10.3168/jds.2009-2061
- Meyer K, Houle D. Sampling based approximation of confidence intervals for functions of genetic covariance matrices. In: Proceedings of the Association for the Advancement of Animal Breeding and Genetics 2013; 2013 August 20-23:Napier, New Zealand. 2013. p. 523-6.
- Haile-Mariam M, Nieuwhof GJ, Beard KT, Konstatinov KV, Hayes BJ. Comparison of heritabilities of dairy traits in Australian Holstein-Friesian cattle from genomic and pedigree data and implications for genomic evaluations. J Anim Breed Genet 2013;130:20-31. https://doi.org/10.1111/j.1439-0388.2013.01001.x
- VanRaden PM, Van Tassell CP, Van Tassell GR, et al. Invited review: Reliability of genomic predictions for North American Holstein bulls. J Dairy Sci 2009;92:16-24. https://doi.org/10.3168/jds.2008-1514
- Sun C, VanRaden PM, Cole JB, Connell JRO. Improvement of prediction ability for genomic selection of dairy cattle by including dominance effects. PLoS ONE 2014;9:e103934. https://doi.org/10.1371/journal.pone.0103934
- Petrini J, Iung LHS, Rodriguez MAP, et al. Genetic parameters for milk fatty acids, milk yield and quality traits of a Holstein cattle population reared under tropical conditions. J Anim Breed Genet 2016;133:384-95. https://doi.org/10.1111/jbg.12205
- Gao H, Christensen OF, Madsen P, et al. Comparison on genomic predictions using three GBLUP methods and two singlestep blending methods in the Nordic Holstein population. Genet Sel Evol 2012;44:8. https://doi.org/10.1186/1297-9686-44-8
- Okeno TO, Kosgey IS, Kahi AK. Genetic evaluation of breeding strategies for improvement of dairy cattle in Kenya. Trop Anim Health Prod 2010:42;1073-9. https://doi.org/10.1007/s11250-010-9528-z
- Mokhtari MS, Moradi SM, Nejati JA, Rosa GJM. Genetic relationship between heifers and cows fertility and milk yield traits in first-parity Iranian Holstein dairy cows. Livest Sci 2015;182:76-82. https://doi.org/10.1016/j.livsci.2015.10.026
- Pritchard T, Coffey M, Mrode R, Wall E. Genetic parameters for production, health, fertility and longevity traits in dairy cows. Animal 2013;7:34-46. https://doi.org/10.1017/S1751731112001401
- Sneddon NW, Lopez-Villalobos N, Davis SR, Hickson RE, Shalloo L. Genetic parameters for milk components including lactose from test day records in the New Zealand dairy herd. New Zealand J Agric Res 2015;58:97-107. https://doi.org/10.1080/00288233.2014.978482
- Szyda J, Zukowski K, Kaminski S, Zarnecki A. Testing different single nucleotide polymorphism selection strategies for prediction of genomic breeding values in dairy cattle based on low density panels. Czech J Anim Sci 2013;58:136-45. https://doi.org/10.17221/6670-CJAS
- VanRaden PM, Tooker ME, O'Connell JR, Cole JB, Bickhart DM. Selecting sequence variants to improve genomic predictions for dairy cattle. Genet Sel Eval 2017;49:32. https://doi.org/10.1186/s12711-017-0307-4
- Wiggans GR, Cole JB, Hubbard SM, Sonstegard SM. Genomic selection in dairy cattle: the USDA experience. Annu Rev Anim Biosci 2017;5:309-27. https://doi.org/10.1146/annurevanimal-021815-111422
- Elzo MA, Mateescu RG, Johnson DD, et al. Genomic-polygenic and polygenic predictions for nine ultrasound and carcass traits in Angus-Brahman multibreed cattle using three sets of genotypes. Livest Sci 2017;202:58-66. https://doi.org/10.1016/j.livsci.2017.05.027
Cited by
- Identification of markers associated with estimated breeding value and horn colour in Hungarian Grey cattle vol.34, pp.4, 2019, https://doi.org/10.5713/ajas.19.0881
- Genomic prediction of milk-production traits and somatic cell score using single-step genomic best linear unbiased predictor with random regression test-day model in Thai dairy cattle vol.104, pp.12, 2021, https://doi.org/10.3168/jds.2021-20263