참고문헌
- Abbas, S., Soliman, M.A. and Nehdi, L.M. (2015), "Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages", Constr. Build. Mater., 75, 429-441. https://doi.org/10.1016/j.conbuildmat.2014.11.017.
- Alarcon-Ruiz, L., Gerard, P., Etienne, M. and Alain, E. (2005), "The use of thermal analysis in assessing the effect of temperature on a cement paste", Cement Concrete Res., 35(3), 609-613. https://doi.org/10.1016/J.CEMCONRES.2004.06.015.
- ASTM C1856 / C1856M - 17, Standard Practice for Fabricating and Testing Specimens of Ultra-High Performance Concrete, ASTM International, West Conshohocken, PA,
- Baert, G., Hoste, S., Schutter, D.G. and Belie, D.N. (2008), "Reactivity of fly ash in cement paste studied by means of thermogravimetry and isothermal calorimetry", J. Therm. Anal. Calorim., 94(2), 485-492. https://doi.org/10.1007/s10973-007-8787-z.
- Bellew, G.E.P (1996), "Microstructural investigation of deteriorated Portland cement concretes", Constr. Build. Mater., 10(1), 3-16. https://doi.org/10.1016/0950-0618(95)00066-6.
- Deschner, F., Winnefeld, F., Lothenbach, B., Seufert, S., Schwesig, P., Dittrich, S., Goetz-Neunhoeffer, F. and Neubauer, J. (2012), "Hydration of Portland cement with high replacement by siliceous fly ash", Cement Concrete Res., 42(10), 1389-1400. https://doi.org/10.1016/J.CEMCONRES.2012.06.009.
- European Committee for Standardization (CEN), EN 196-1 (1995), Methods of Testing Cement-Part 1: Determination of Strength.
- Fennis, A.A.M.F. and Walraven, J.C. (2012), "Using particle packing technology for sustainable concrete mixture design", Heron., 57(2), 73-101.
- Fraay, A.L.A., Bijen, J.M. and Haan, D.Y.M. (1989), "The reaction of fly ash in concrete a critical examination", Cement Concrete Res., 19(2), 235-246. https://doi.org/10.1016/0008-8846(89)90088-4.
- Funk, J.E. and Dinger, D.R. (1994), Predictive Process Control of Crowded Particulate Suspensions, Applied to Ceramic Manufacturing, Kluwer Academic Publishers, Boston, United States.
- Ghafari, E., Costa, H., JUlio, E., Portugal, A. and Duraes, L. (2014), "The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete", Mater. Des., 59, 1-9. https://doi.org/10.1016/j.matdes.2014.02.051.
- Grunewald, S. (2004), "Performance-based design of self-compacting fibre reinforced concrete", Ph.D. Dissertation, Delft University of Technology.
- Johari, M.A.M., Zeyad, A.M., Bunnori, M.N. and Ariffin, K.S. (2012), "Engineering and transport properties of high-strength green concrete containing high volume of ultrafine palm oil fuel ash", Constr. Build. Mater., 30, 281-288. https://doi.org/10.1016/j.conbuildmat.2011.12.007.
- Joshi, C.R. and Nagaraj, S.T. (1990), "Generalization of flow behavior of cement -fly - ash pastes and mortars", J. Mater. Civil Eng., 2(3), 128-135. https://doi.org/10.1061/(ASCE)0899-1561(1990)2:3(128)
- Kondraivendhan, B. and Bhattacharjee, B. (2015), "Flow behavior and strength for fly ash blended cement paste and mortar", Int. J. Sustain. Built Environ., 4(2), 270-277. https://doi.org/10.1016/J.IJSBE.2015.09.001.
- Korpa, R. and Trettin, A. (2008), "Ultra high performance cement based composites with advanced properties containing nanoscale pozzolans", Proc. Second Int. Symp. Ultra High Perform. Concr., Kessel, Germany.
- Kwon, S., Nishiwaki, T., Kikuta, T. and Mihashi, H. (2013), "Tensile behavior of ultra high performance hybrid fiber reinforced cement-based composites", VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS-8, 1-6.
- Kwon, S., Nishiwaki, T., Kikuta, T. and Mihashi, H. (2014), "Development of Ultra-High-Performance hybrid Fiber-Reinforced Cement-Based composites", ACI Mater. J., 111(3), 309-318.
- Lura, P., Trtik, P. and Munch, B. (2011), "Validity of recent approaches for statistical nanoindentation of cement pastes", Cement Concrete Compos., 33(4), 457-465. https://doi.org/10.1016/j.cemconcomp.2011.01.006.
- Markovic, I. (2006), "High-performance hybrid-fibre concrete: Development and utilisation". Ph.D. Dissertation, Delft University of Technology.
- Mohammed, N.A., Johari, M.A.M., Zeyad, M.A., Tayeh, A.B. and Yusuf, O.M. (2014), "Improving the engineering and fluid transport properties of ultra-high strength concrete utilizing ultrafine palm oil fuel ash", J. Adv. Concr. Technol., 12(4), 127-137. https://doi.org/10.3151/jact.12.127.
- Mosaberpanah, A.M and Eren, O. (2013), "Effect of quartz powder, quartz sand and water curing regimes on mechanical properties of UHPC using response surface modelling", Adv. Concrete Constr., 5(5), 481-492. https://doi.org/10.12989/acc.2017.5.5.481.
- Nguyen, D.L., Kim, J.D., Ryu, S.G. and Koh, T.K. (2013), "Size effect on flexural behavior of ultra-high-performance hybrid fiber-reinforced concrete", Compos. Part B Eng., 45(1), 1104-1116. https://doi.org/10.1016/j.compositesb.2012.07.012.
-
Noumowe, A. (1995), "Effet des hautes temperatures (20
$-600^{\circ}C$ ) sur le beton a hautes performances", PhD Dissertation, Institut National des Sciences Appliquees. - Ollivier, P.J., Maso, C.J. and Bourdette, B. (1995), "Interfacial transition zone in concrete", Adv. Cement Bas. Mater., 2(1), 30-38. https://doi.org/10.1016/1065-7355(95)90037-3.
- Prem, P. Bharatkumar, B. and Iyer, R.N. (2012), "Mechanical properties of ultra high performance concrete", World Acad. Sci., 6(8), 676-685.
- Park, S.H., Kim, D.J., Ryu, G.S. and Koh, K.T. (2012), "Tensile behavior of ultra high performance hybrid fiber reinforced concrete", Cement Concrete Compos., 34(2), 172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009.
- Rahhal, V. and Talero, R. (2004), "Influence of two different fly ashes on the hydration of portland cements", J. Therm. Anal. Calorim., 78(1), 191-205. https://doi.org/10.1023/B:JTAN.0000042167.46181.17.
- Rangaraju, P.R., Kizhakommudom, H, and Li, Z. (2014), "Development of high-strength / high performance concrete / grout mixtures for application in shear keys in precast bridges", Research Report Number, FHWA-SC-13-04a, Glenn Department of Civil Engineering, Clemson University, Clemson, South Carolina, USA.
- Reda, M.M., Shrive, N.G. and Gillott, J.E. (1999), "Microstructural investigation of innovative UHPC", Cement Concrete Res., 29(3), 323-329. https://doi.org/10.1016/S0008-8846(98)00225-7.
- Rossi, P., Acker, P. and Malier, Y. (1987), "Effect of steel fibres at two different stages: The material and the structure", Mater. Struct., 20(6), 436-439. https://doi.org/10.1007/BF02472494
- Schmidt, M. and Fehling, E. (2005), "Ultra-high-performance concrete: research, development and application in Europe", ACI Spec. Publ., 228, 51-78.
- Sorelli, L., Constantinides, G., Ulm, J.F. and Toutlemonde, F. (2008), "The nano-mechanical signature of Ultra High Performance Concrete by statistical nanoindentation techniques", Cement Concrete Res., 38(12), 1447-1456. https://doi.org/10.1016/j.cemconres.2008.09.002.
- Staquet, B. and Espion, S. (2004), "Early-age autogenous shrinkage of UHPC incorporating very fine fly ash or metakaolin in replacement of silica Fume", Proceedings of the Int. Symp. Ultra High Perform. Concr., Kassel, Germany, September.
- Tuan, V.N., Ye, G., Breugel, V.K., Fraaij, L.A.A. and Dai, D.D. (2011), "The study of using rice husk ash to produce ultra high performance concrete", Constr. Build. Mater., 25(4), 2030-2035. https://doi.org/10.1016/j.conbuildmat.2010.11.046.
- Ulm, F.J., Vandamme, M., Jennings, H.M., Vanzo, J., Bentivegna, M., Krakowiak, K.J., Constantinides, G., Bobko, C.P. and Van Vliet, K.J. (2010), "Does microstructure matter for statistical nanoindentation techniques?, Cement Concrete Compos., 32(1), 92-99. https://doi.org/10.1016/j.cemconcomp.2009.08.007.
- Yu, R., Spiesz, P. and Brouwers, H.J.H. (2015), "Development of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC): towards an efficient utilization of binders and fibres", Constr. Build. Mater., 79, 273-282. https://doi.org/10.1016/j.conbuildmat.2015.01.050.
- Yu, R., Spiesz, P. and Brouwers, H.J.H. (2014c), "Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC)", Cement Concrete Res. 56, 29-39. https://doi.org/10.1016/j.cemconres.2013.11.002.
- Wang, C., Yang, C., Liu, F., Wan, C. and Pu, X. (2012), "Preparation of Ultra-High Performance Concrete with common technology and materials", Cement Concrete Compos., 34(4), 538-544. https://doi.org/10.1016/j.cemconcomp.2011.11.005.
- Yang, I.H., Joh, C. and Kim, B.S. (2011), "Flexural strength of ultra high strength concrete beams reinforced with steel fibers", Procedia Eng., 14, 793-796. https://doi.org/10.1016/j.proeng.2011.07.100.
- Yu, R., Spiesz, P. and Brouwers, H.J.H. (2014a), "Effect of nano-silica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount", Constr. Build. Mater., 65, 140-150. https://doi.org/10.1016/j.conbuildmat.2014.04.063.
- Yu, R., Spiesz, P. and Brouwers, H.J.H. (2015), "Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses", Cement Concrete Compos., 55, 383-394. https://doi.org/10.1016/j.cemconcomp.2014.09.024.
- Yu, R., Tang, P., Spiesz, P. and Brouwers, H.J.H. (2014b), "A study of multiple effects of nano-silica and hybrid fibres on the properties of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) incorporating waste bottom ash (WBA)", Constr. Build. Mater., 60, 98-110. https://doi.org/10.1016/j.conbuildmat.2014.02.059.
- Zhang, J., Zhao, Y. and Li, H. (2017), "Experimental Investigation and prediction of compressive strength of ultra-high performance concrete containing supplementary cementitious materials", Adv. Mater. Sci. Eng., 2017, https://doi.org/10.1155/2017/4563164.
피인용 문헌
- Comparison of the effect of lithium bentonite and sodium bentonite on the engineering properties of bentonite-cement-sodium silicate grout vol.9, pp.3, 2020, https://doi.org/10.12989/acc.2020.9.3.279
- Static behavior of stud shear connectors with initial damage in steel-UHPC composite bridges vol.9, pp.4, 2019, https://doi.org/10.12989/acc.2020.9.4.413
- The use of river sand for fine aggregate in UHPC and the effect of its particle size vol.10, pp.5, 2019, https://doi.org/10.12989/acc.2020.10.5.431
- Effect of cement as mineral filler on the performance development of emulsified asphalt concrete vol.10, pp.6, 2019, https://doi.org/10.12989/acc.2020.10.6.515
- Long-term monitoring of a hybrid SFRC slab on grade using recycled tyre steel fibres vol.10, pp.6, 2019, https://doi.org/10.12989/acc.2020.10.6.547
- Development of high performance hybrid fiber reinforced concrete using different fine aggregates vol.11, pp.1, 2019, https://doi.org/10.12989/acc.2021.11.1.019
- Improving the flexural toughness behavior of R.C beams using micro/nano silica and steel fibers vol.11, pp.1, 2021, https://doi.org/10.12989/acc.2021.11.1.045
- Microstructure and mechanical behavior of cementitious composites with multi-scale additives vol.11, pp.2, 2019, https://doi.org/10.12989/acc.2021.11.2.163
- Mix design and early-age mechanical properties of ultra-high performance concrete vol.11, pp.4, 2019, https://doi.org/10.12989/acc.2021.11.4.335
- Experimental comparability between steam and normal curing methods on tensile behavior of RPC vol.11, pp.4, 2019, https://doi.org/10.12989/acc.2021.11.4.347