DOI QR코드

DOI QR Code

Bond-slip effect in steel-concrete composite flexural members: Part 1 - Simplified numerical model

  • Lee, WonHo (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kwak, Hyo-Gyoung (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Hwang, Ju-young (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • 투고 : 2019.03.07
  • 심사 : 2019.08.22
  • 발행 : 2019.08.25

초록

This paper introduces an improved numerical model which can consider the bond-slip effect in steel-concrete composite structures without taking double nodes to minimize the complexity in constructing a finite element model. On the basis of a linear partial interaction theory and the use of the bond link element, the slip behavior is defined and the equivalent modulus of elasticity and yield strength for steel is derived. A solution procedure to evaluate the slip behavior along the interface of the composite flexural members is also proposed. After constructing the transfer matrix relation at an element level, successive application of the constructed relation is conducted from the first element to the last element with the compatibility condition and equilibrium equations at each node. Finally, correlation studies between numerical results and experimental data are conducted with the objective of establishing the validity of the proposed numerical model.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF)

참고문헌

  1. ADINA (2015), ADINA Handbook system 9.1, ADINA R&D, Inc.
  2. AISC 360 (2010), Specification for Structural Steel Buildings, American Institute of Steel Construction; Chicago, USA.
  3. Ansourian, P. (1981), "Experiments on continuous composite beams", No. Res Rpt. R 384 Monograph.
  4. Bartschi, R. and Fontana, M. (2006), "Composite beams with nonlinear material and connector behaviour for low degrees of partial shear connection", Compos. Constr. Steel Concrete V, 573-582. https://doi.org/10.1061/40826(186)54
  5. Bathe, K.J. (2007), Finite Element Procedures, Klaus-Jurgen Bathe.
  6. Bonilla, J., Bezerra, L.M., Mirambell, E. and Massicotte, B. (2018), "Review of stud shear resistance prediction in steel-concrete composite beams", Steel Compos. Struct., Int. J., 27(3), 355-370. https://doi.org/10.12989/scs.2018.27.3.355
  7. Chapman, J.C. and Balakrishnan, S. (1964), "Experiments on composite beams", Struct. Engr., 42(11), 369-383.
  8. Chopra, A.K. (2007), Dynamics of Structures : Theory and Applications to Earthquake Engineering, Pearson Education
  9. de Groot, A.K., Kusters, G.M.A. and Monnier, T. (1981), "Concrete mechanics. Part B: Numerical modelling of bond-slip behvaviour", NASA STI/Recon Technical Report N 82.
  10. Dehestani, M. and Mousavi, S.S. (2015), "Modified steel bar model incorporating bond-slip effects for embedded element method", Constr. Build. Mater., 81, 284-290. https://doi.org/10.1016/j.conbuildmat.2015.02.027
  11. Dezi, L., Ianni, C. and Tarantino, A.M. (1993), "Simplified creep analysis of composite beams with flexible connectors", J. Struct. Eng., 119(5), 1484-1497. https://doi.org/10.1016/j.conbuildmat.2015.02.027
  12. Dias, M.M., Tamayo, J.L., Morsch, I.B. and Awruch, A.M. (2015), "Time dependent finite element analysis of steel-concrete composite beams considering partial interaction", Comput. Concrete, Int. J., 15(4), 687-707. https://doi.org/10.12989/cac.2015.15.4.687
  13. Ding, F.X., Yin, G.A., Wang, H.B., Wang, L. and Guo, Q. (2017), "Behavior of headed shear stud connectors subjected to cyclic loading", Steel Compos. Struct., Int. J., 25(6), 705-716. https://doi.org/10.12989/scs.2017.25.6.705
  14. El-lobody, E. and Lam, D. (2002), "Modelling of headed stud in steel-precast composite beams", Steel Compos. Struct., Int. J., 2(5), 355-378. https://doi.org/10.12989/scs.2002.2.5.355
  15. Eurocode 4 (2004), Design of composite steel and concrete structures Part 1-1 : General rules and rules for buildings. European Committee for Standardization; Brussels, Belgium.
  16. Gara, F., Ranzi, G. and Leoni, G. (2006), "Displacement-based formulations for composite beams with longitudinal slip and vertical uplift", Int. J. Numer. Methods Eng., 65(8), 1197-1220. https://doi.org/10.1002/nme.1484
  17. Gattesco, N. (1999), "Analytical modeling of nonlinear behavior of composite beams with deformable connection", J. Constr. Steel Res., 52(2), 195-218. https://doi.org/10.1016/S0143-974X(99)00026-7
  18. Hwang, J.W. and Kwak, H.G. (2013), "Improved FE model to simulate interfacial bond-slip behavior in composite beams under cyclic loadings", Comput. Struct., 125, 164-176. https://doi.org/10.1016/j.compstruc.2013.04.020
  19. Kent, D.C. and Park, R. (1971), "Flexural members with confined concrete", J. Struct. Div., 97(7), 1969-1990. https://doi.org/10.1061/JSDEAG.0002957
  20. Keuser, M and Mehlhorn, G. (1988), "Finite element models for bond problems", J. Struct. Eng., 113(10), 2160-2173. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:10(2160)
  21. Kwak, H.G. and Hwang, J.W. (2010), "FE model to simulate bond-slip behavior in composite concrete beam bridges", Comput. Struct., 88(17-18), 973-984. https://doi.org/10.1016/j.compstruc.2010.05.005
  22. Kwak, H.G. and Kim, S.P. (2001), "Bond-slip behavior under monotonic uniaxial loads", Eng. Struct., 23(3), 298-309. https://doi.org/10.1016/S0141-0296(00)00008-0
  23. Kwak, H.G. and Kim, S.P. (2010), "Simplified monotonic moment-curvature relation considering fixed-end rotation and axial force effect", Eng. Struct., 32(1), 69-79. https://doi.org/10.1016/j.engstruct.2009.08.017
  24. Lam, D. and El-Lobody, E. (2005), "Behavior of headed stud shear connectors in composite beam", J. Struct. Eng., 131(1), 96-107. Lowes, L.N., Moehle, J.P. and Govindjee, S. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(96)
  25. Lee, W.H., Kwak, H.G. and Kim, J.R. (2019), "Bond-slip effect in steel-concrete composite flexural members: (2) Improvement of shear stud spacing in SCP", Steel Compos. Struct., Int. J., 32(4), 549-557. https://doi.org/10.12989/scs.2019.32.4.549
  26. Lin, J.-P., Wang, G., Bao, G. and Xu, R. (2017), "Stiffness matrix for the analysis and design of partial-interaction composite beams", Constr. Build. Mater., 156, 761-772. https://doi.org/10.1016/j.conbuildmat.2017.08.154
  27. Lizhong, J., Zhiwu, Y., Hua, C. and Zhongwu, L. (2008), "Effect of shear connection degree on seismic resistant performance of steel-concrete composite beams", Build. Struct., 3, 15.
  28. Loh, H.Y., Uy, B. and Bradford, M.A. (2004), "The effects of partial shear connection in the hogging moment regions of composite beams Part I - Experimental study", J. Constr. Steel Res., 60(6), 897-919. https://doi.org/10.1016/j.jcsr.2003.10.007
  29. Lowes, L.N., Moehle, J.P. and Govindjee, S. (2004), "Concrete-steel bond model for use in finite element modeling of reinforced concrete structures", Struct. Journal, 101(4), 501-511.
  30. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solids Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
  31. Menzies, J.B. (1971), "CP117 and shear connectors in steel-concrete composite beams made with normal-density or lightweight concrete", Struct. Engr., 49(3), 137-154.
  32. Oehlers, D.J. and Bradford, M.A. (1999), Elementary behaviour of composite steel and concrete structural members, Butterworth-Heinemann.
  33. Oehlers, D.J. and Bradford, M.A. (2013), Composite steel and concrete structural members : fundamental behaviour, Elsevier
  34. Oehlers, D.J. and Coughlan, C.G. (1986), "The shear stiffness of stud shear connections in composite beams", J. Constr. Steel Res., 6(4), 273-284. https://doi.org/10.1016/0143-974X(86)90008-8
  35. Queiroz, F.D., Vellasco, P.C.G.S. and Nethercot, D.A. (2007), "Finite element modelling of composite beams with full and partial shear connection", J. Constr. Steel Res., 63(4), 505-521. https://doi.org/10.1016/j.jcsr.2006.06.003
  36. Ranzi, G. and Zona, A. (2007), "A steel-concrete composite beam model with partial interaction including the shear deformability of the steel component", Eng. Struct., 29(11), 3026-3041. https://doi.org/10.1016/j.engstruct.2007.02.007
  37. Roberts, T.M. (1985), "Finite difference analysis of composite beams with partial interaction", Comput. Struct., 21(3), 469-473. https://doi.org/10.1016/0045-7949(85)90124-5
  38. Roberts, T.M., Helou, A.J., Narayanan, R. and Naji, F.J. (1995), "Design criteria for double skin composite immersed tunnels", Proceeding of the Third International Conference on Steel and Aluminium Structures, Istanbul, Turkey, pp. 507-514.
  39. Scott, B.D., Park, R. and Priestley, M.J.N. (1982), "Stress-Strain Behavior of Concrete Confined by Overlapping Hoops at Low and High Strain Rates", J. Am. Concrete Inst., 79(1), 13-27.
  40. Shim, C.S., Lee, P.G. and Yoon, T.Y. (2004), "Static behavior of large stud shear connectors", Eng. Struct., 26(12), 1853-1860. https://doi.org/10.1016/j.engstruct.2004.07.011
  41. Shin, D.K. and Hwang, Y.Y. (2016), "An experimental study on bending capacity of SC(steep plate) panel", Proceedings of Conference on Korean Concrete Institute (KCI), 28(1), 1-2.
  42. Simulia, D. (2017), Abaqus 6.17 Documentation, DS SIMULIA Corp., USA
  43. Sousa Jr, J.B.M. and da Silva, A.R. (2007), "Nonlinear analysis of partially connected composite beams using interface elements", Finite Elem. Anal. Des., 43(11-12), 954-964. https://doi.org/10.1016/j.finel.2007.06.010
  44. Wang, A.J. and Chung, K.F. (2008), "Advanced finite element modelling of perforated composite beams with flexible shear connectors", Eng. Struct., 30(10), 2724-2738. https://doi.org/10.1016/j.engstruct.2008.03.001
  45. Winkler, B., Blanchi, P. and Siemens, M. (2006), "Nonlinear analysis of connectors applied on concrete composite constructions", Comput. Concrete, Int. J., 3(2-3), 91-102. https://doi.org/10.12989/cac.2006.3.2_3.091
  46. Zhang, K., Varma, A.H., Malushte, S.R. and Gallocher, S. (2014), "Effect of shear connectors on local buckling and composite action in steel concrete composite walls", Nuclear Eng. Des., 269, 231-239. https://doi.org/10.1016/j.nucengdes.2013.08.035

피인용 문헌

  1. Behavior of L-shaped double-skin composite walls under compression and biaxial bending vol.37, pp.4, 2020, https://doi.org/10.12989/scs.2020.37.4.405