References
- Bich, D.H., Van Dung, D. and Nam, V.H. (2012), "Nonlinear dynamical analysis of eccentrically stiffened functionally graded cylindrical panels", Compos. Struct., 94(8), 2465-2473. https://doi.org/10.1016/j.compstruct.2012.03.012
- Bich, D.H., Van Dung, D., Nam, V.H. and Phuong, N.T. (2013), "Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression", Int. J. Mech. Sci., 74, 190-200. https://doi.org/10.1016/j.ijmecsci.2013.06.002
- Brush, D.O. and Almroth, B.O. (1975), Buckling of Bars, Plates, and Shells, McGraw-Hill, New York, NY, USA.
- Chen, M., Xie, K., Jia, W. and Xu, K. (2015), "Free and forced vibration of ring-stiffened conical-cylindrical shells with arbitrary boundary conditions", Ocean Eng., 108, 241-256. https://doi.org/10.1016/j.oceaneng.2015.07.065
- Choe, K., Tang, J., Shui, C., Wang, A. and Wang, Q. (2018a), "Free vibration analysis of coupled functionally graded (fg) doubly-curved revolution shell structures with general boundary conditions", Compos. Struct., 194, 413-432. https://doi.org/10.1016/j.compstruct.2018.04.035
- Choe, K., Wang, Q. and Tang, J. (2018b), "Vibration analysis for coupled composite laminated axis-symmetric doubly-curved revolution shell structures by unified jacobi-ritz method", Compos. Struct., 194, 136-157. https://doi.org/10.1016/j.compstruct.2018.03.095
- Darabi, M., Darvizeh, M. and Darvizeh, A. (2008), "Non-linear analysis of dynamic stability for functionally graded cylindrical shells under periodic axial loading", Compos. Struct., 83(2), 201-211. https://doi.org/10.1016/j.compstruct.2007.04.014
- Dey, T. and Ramachandra, L. (2017), "Non-linear vibration analysis of laminated composite circular cylindrical shells", Compos. Struct., 163, 89-100. https://doi.org/10.1016/j.compstruct.2016.12.018
- Duc, N.D. and Thang, P.T. (2015), "Nonlinear dynamic response and vibration of shear deformable imperfect eccentrically stiffened s-fgm circular cylindrical shells surrounded on elastic foundations", Aer. Sci. Technol., 40, 115-127. https://doi.org/10.1016/j.tws.2017.04.013
- Duc, N.D., Nguyen, P.D. and Khoa, N.D. (2017), "Nonlinear dynamic analysis and vibration of eccentrically stiffened s-fgm elliptical cylindrical shells surrounded on elastic foundations in thermal environments", Thin Wall. Struct., 117, 178-189. https://doi.org/10.1016/j.tws.2017.04.013
- Dung, D. and Nam, V.H. (2014), "Nonlinear dynamic analysis of eccentrically stiffened functionally graded circular cylindrical thin shells under external pressure and surrounded by an elastic medium", Eur. J. Mech. A-Solid., 46, 42-53. https://doi.org/10.1016/j.euromechsol.2014.02.008
- Foroutan, M., Moradi-Dastjerdi, R. and Sotoodeh-Bahreini, R. (2012), "Static analysis of fgm cylinders by a mesh-free method", Steel Compos. Struct., Int. J., 12(1), 1-11. https://doi.org/10.12989/scs.2012.12.1.001
- Ghiasian, S., Kiani, Y. and Eslami, M. (2013), "Dynamic buckling of suddenly heated or compressed fgm beams resting on nonlinear elastic foundation", Compos. Struct., 106, 225-234. https://doi.org/10.1016/j.compstruct.2013.06.001
- He, X., Li, L., Kitipornchai, S., Wang, C. and Zhu, H. (2012), "Bi-stable analyses of laminated fgm shells", Int. J. Struct. Stab. Dyn., 12(2), 311-335. https://doi.org/10.1142/S0219455412500058
- Javed, S., Viswanathan, K.K. and Aziz, Z.A. (2016), "Free vibration analysis of composite cylindrical shells with non-uniform thickness walls", Steel Compos. Struct., Int. J., 20(5), 1087-1102. https://doi.org/10.12989/scs.2016.20.5.1087
- Khayat, M., Dehghan, S.M., Najafgholipour, M.A. and Baghlani, A. (2018), "Free vibration analysis of functionally graded cylindrical shells with different shell theories using semi-analytical method", Steel Compos. Struct., Int. J., 28(6), 735-748. https://doi.org/10.12989/scs.2018.28.6.735
- Kiani, Y., Dimitri, R. and Tornabene, F. (2018a), "Free vibration study of composite conical panels reinforced with FG-CNTs", Eng. Struct., 172, 472-482. https://doi.org/10.1016/j.engstruct.2018.06.006
- Kiani, Y., Dimitri, R. and Tornabene, F. (2018b), "Free vibration of fg-cnt reinforced composite skew cylindrical shells using the chebyshev-ritz formulation", Compos. Part B-Eng., 147, 169-177. https://doi.org/10.1016/j.compositesb.2018.04.028
- Lee, H. and Kwak, M.K. (2015), "Free vibration analysis of a circular cylindrical shell using the rayleigh-ritz method and comparison of different shell theories", J. Sound Vib., 353, 344-377. https://doi.org/10.1016/j.jsv.2015.05.028
- Malikan, M., Dimitri, R. and Tornabene, F. (2018), "Effect of sinusoidal corrugated geometries on the vibrational response of viscoelastic nanoplates", Appl. Sci., 8(9), 1432. https://doi.org/10.3390/app8091432
- Mochida, Y., Ilanko, S., Duke, M. and Narita, Y. (2012), "Free vibration analysis of doubly curved shallow shells using the superposition-galerkin method", J. Sound Vib., 331(6), 1413-1425. https://doi.org/10.1016/j.jsv.2011.10.031
- Mohammadi, M., Arefi, M., Dimitri, R. and Tornabene, F. (2019), "Higher-order thermo-elastic analysis of FG-CNTRC cylindrical vessels surrounded by a Pasternak foundation", Nanomaterials, 9(1), 79. https://doi.org/10.3390/nano9010079
- Nayfeh, A.H. and Mook, D.T. (2008), Nonlinear Oscillations, John Wiley & Sons.
- Nejati, M., Dimitri, R., Tornabene, F. and Hossein Yas, M. (2017), "Thermal buckling of nanocomposite stiffened cylindrical shells reinforced by functionally graded wavy carbon nanotubes with temperature-dependent properties", Appl. Sci., 7(12), 1223. https://doi.org/10.3390/app7121223
- Paliwal, D., Pandey, R.K. and Nath, T. (1996), "Free vibrations of circular cylindrical shell on winkler and pasternak foundations", Int. J. Pres. Ves. Pip., 69(1), 79-89. https://doi.org/10.1016/0308-0161(95)00010-0
- Pellicano, F. (2007), "Vibrations of circular cylindrical shells: Theory and experiments", J. Sound Vib., 303(1-2), 154-170. https://doi.org/10.1016/j.jsv.2007.01.022
- Qin, Z., Chu, F. and Zu, J. (2017), "Free vibrations of cylindrical shells with arbitrary boundary conditions: A comparison study", Int. J. Mech. Sci., 133, 91-99. https://doi.org/10.1016/j.ijmecsci.2017.08.012
- Qin, Z., Yang, Z., Zu, J. and Chu, F. (2018), "Free vibration analysis of rotating cylindrical shells coupled with moderately thick annular plates", Int. J. Mech. Sci., 142, 127-139. https://doi.org/10.1016/j.ijmecsci.2018.04.044
- Safaei, B., Moradi-Dastjerdi, R. and Chu, F. (2018), "Effect of thermal gradient load on thermo-elastic vibrational behavior of sandwich plates reinforced by carbon nanotube agglomerations", Compos. Struct., 192, 28-37. https://doi.org/10.1016/j.compstruct.2018.02.022
- Safaei, B., Moradi-Dastjerdi, R., Qin, Z. and Chu, F. (2019), "Frequency-dependent forced vibration analysis of nanocomposite sandwich plate under thermo-mechanical loads", Compos. Part B-Eng., 161, 44-54. https://doi.org/10.1016/j.compositesb.2018.10.049
- Sewall, J.L. and Naumann, E.C. (1968), "An experimental and analytical vibration study of thin cylindrical shells with and without longitudinal stiffeners", NASA TN D-4705.
- Sewall, J.L. Clary, R.R. and Leadbetter, S.A. (1964), "An Experimental and Analytical Vibration Study of a Ring-stiffened Cylindrical Shell Structure with Various Support Conditions", NASA TN D-2398.
- Shaterzadeh, A. and Foroutan, K. (2016), "Post-buckling of cylindrical shells with spiral stiffeners under elastic foundation", Struct. Eng. Mech., Int. J., 60(4), 615-631. https://doi.org/10.12989/sem.2016.60.4.615
- Shen, H.-S., Xiang, Y., Fan, Y. and Hui, D. (2018), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical panels resting on elastic foundations in thermal environments", Compos. Part B-Eng., 136, 177-186. https://doi.org/10.1016/j.compositesb.2017.10.032
- Sheng, G. and Wang, X. (2008), "Thermomechanical vibration analysis of a functionally graded shell with flowing fluid", Eur. J. Mech. A-Solid., 27(6), 1075-1087. https://doi.org/10.1016/j.euromechsol.2008.02.003
- Sofiyev, A. (2005), "The stability of compositionally graded ceramic-metal cylindrical shells under aperiodic axial impulsive loading", Compos. Struct., 69(2), 247-257. https://doi.org/10.1016/j.compstruct.2004.07.004
- Sofiyev, A. (2009), "The vibration and stability behavior of freely supported fgm conical shells subjected to external pressure", Compos. Struct., 89(3), 356-366. https://doi.org/10.1016/j.compstruct.2008.08.010
- Sofiyev, A., Karaca, Z. and Zerin, Z. (2017), "Non-linear vibration of composite orthotropic cylindrical shells on the non-linear elastic foundations within the shear deformation theory", Compos. Struct., 159, 53-62. https://doi.org/10.1016/j.compstruct.2016.09.048
- Soong, T.C. (1969), "Buckling of cylindrical shells with eccentric spiral-type stiffeners", AIAA. J, 7(1) 65-72. https://doi.org/10.2514/3.5036
- Torkamani, S., Navazi, H., Jafari, A. and Bagheri, M. (2009), "Structural similitude in free vibration of orthogonally stiffened cylindrical shells", Thin Wall. Struct., 47(11), 1316-1330. https://doi.org/10.1016/j.tws.2009.03.013
- Vasiliev, V.V. and Morozov, E.V. (2018), Advanced Mechanics of Composite Materials and Structures, Elsevier.
- Volmir, A.S. (1972), Non-linear Dynamics of Plates and Shells, Science Edition M, USSR.
- Wang, Y. and Wu, D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aer. Sci. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003
- Yas, M.H. and Garmsiri, K. (2010), "Three-dimensional free vibration analysis of cylindrical shells with continuous grading reinforcement", Steel Compos. Struct., Int. J., 10(4), 349-360. https://doi.org/10.12989/scs.2010.10.4.349
- Zghal, S., Frikha, A. and Dammak, F. (2018), "Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures", Appl. Math. Model., 53, 132-155. https://doi.org/10.1016/j.apm.2017.08.021
Cited by
- Nonlinear Torsional Buckling of Functionally Graded Carbon Nanotube Orthogonally Reinforced Composite Cylindrical Shells in Thermal Environment vol.12, pp.7, 2019, https://doi.org/10.1142/s1758825120500726