DOI QR코드

DOI QR Code

Application of FEM on first ply failure of composite hypar shells with various edge conditions

  • Received : 2018.03.02
  • Accepted : 2019.07.31
  • Published : 2019.08.25

Abstract

This study aims to accurately predict the first ply failure loads of laminated composite hypar shell roofs with different boundary conditions. The geometrically nonlinear finite element method (FEM) is used to analyse different symmetric and anti-symmetric, cross and angle ply shells. The first ply failure loads are obtained through different well-established failure criteria including Puck's criterion along with the serviceability criterion of deflection. The close agreement of the published and present results for different validation problems proves the correctness of the finite element model used in the present study. The effects of edge conditions on first ply failure behavior are discussed critically from practical engineering point of view. Factor of safety values and failure zones are also reported to suggest design and non-destructive monitoring guidelines to practicing engineers. Apart from these, the present study indicates the rank wise relative performances of different shell options. The study establishes that the angle ply laminates in general perform better than the cross ply ones. Among the stacking sequences considered here, three layered symmetric angle ply laminates offer the highest first ply failure load. The probable failure zones on the different shell surfaces, identified in this paper, are the areas where non-destructive health monitoring may be restricted to. The contributions made through this paper are expected to serve as important design aids to engineers engaged in composite hypar shell design and construction.

Keywords

References

  1. Adali, S. and Cagdas, I.U. (2011), "Failure analysis of curved composite panels based on first-ply and buckling failures", Proc. Eng., 10, 1591-1596. https://doi.org/10.1016/j.proeng.2011.04.266
  2. Arciniega, R.A. and Reddy, J.N. (2007), "Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures", Comp. Meth. App. Mech. Engg., 196, 1048-1073. https://doi.org/10.1016/j.cma.2006.08.014
  3. Bakshi, K. and Chakravorty, D. (2013), "Relative static and dynamic performances of composite conoidal shell roofs", Steel Comp. Struct., Int. J., 15 (4), 379-397. https://doi.org/10.12989/scs.2013.15.4.379
  4. Bakshi, K. and Chakravorty, D. (2014), "Geometrically linear and nonlinear first ply failure loads of composite cylindrical shells", J. Eng. Mech.-ASCE, 140(12). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000808
  5. Bandyopadhyay, T. and Karmakar, A. (2015), "Bending characteristics of delaminated cross-ply composite shallow conical shells in hygrothermal environment", J. Reinf. Plast. Compos., 34(20), 1724-1735. https://doi.org/10.1177/0731684415596379
  6. Chang, R.R. and Chiang, T.H. (2010), "Theoretical and experimental predictions of first ply failure of a laminated composite elevated floor plate", Proc. Inst. Mech. Eng. Part E: J. Pro. Mech. Eng., 224(4), 233-245. https://doi.org/10.1243/09544089JPME327
  7. Chattopadhyay, B., Sinha, P.K. and Mukhopadhyay, M. (1995) "Geometrically nonlinear analysis of composite stiffened plates using finite elements", Compos. Struct., 31, 107-118. https://doi.org/10.1016/0263-8223(95)00004-6
  8. Chen, J.F., Morozov, E.V. and Shankar, K. (2012), "A combined elastoplastic damage model for progressive failure analysis of composite materials and structures", Compos. Struct., 94(12), 3478-3489. https://doi.org/10.1016/j.compstruct.2012.04.021
  9. Chen, J.F., Morozov, E.V. and Shankar, K. (2014), "Simulating progressive failure of composite laminates including in-ply and delamination damage effects", Compos.-Part A, 61, 185-200. https://doi.org/10.1016/j.compositesa.2014.02.013
  10. Chroscielewski J., Sabik, A., Sobczyk, B. and Witkowski, W. (2016), "Nonlinear FEM 2D failure onset prediction of composite shells based on 6-parameter shell theory", Thin-Walled Struct., 105, 207-219. https://doi.org/10.1016/j.tws.2016.03.024
  11. Coelho, A.M.G., Mottram, J.T. and Harries, K.A. (2015), "Finite element guidelines for simulation of fibre-tension dominated failures in composite materials validated by case studies", Compos. Struct., 126, 299-313. https://doi.org/10.1016/j.compstruct.2015.02.071
  12. Das, H.S. and Chakravorty, D. (2007), "Design aids and selection guidelines for composite conoidal shell roofs-a finite element application", J. Reinf. Plast. Compos., 26(17), 1793-1819. https://doi.org/10.1177/0731684407081380
  13. Dey, S. and Karmakar, A. (2012), "Dynamic analysis of delaminated composite conical shells under low velocity impact", J. Reinf. Plast. Compos., 32(6), 380-392. https://doi.org/10.1177/0731684412465663
  14. Dong, H., Wanga, J. and Karihaloo, B.L. (2014), "An improved Puck's failure theory for fibre reinforced composite laminates including the in situ strength effect", Compos. Sci. Tech., 98, 86-92. https://doi.org/10.1016/j.compscitech.2014.04.009
  15. Ellul, B., Camilleri, D. and Betts, C. (2014), "A progressive failure analysis applied to fiber reinforced composite plates subject to out-of- plane bending", J. Mech. Compos. Mat., 49(6), 605-620. https://doi.org/10.1007/s11029-013-9377-8
  16. Gadade, A.M., Lal, A. and Singh, B.N. (2016a), "Accurate stochastic initial and final failure of laminated plates subjected to hygro-thermo-mechanical loadings using Puck's failure criteria", Int. J. Mech. Sci., 114, 177-206. https://doi.org/10.1016/j.ijmecsci.2016.05.015
  17. Gadade, A.M., Lal, A. and Singh, B.N. (2016b), "Finite element implementation of Puck's failure criterion for failure analysis of laminated plate subjected to biaxial loadings", Aeros. Sci. Tech., 55, 227-241. https://doi.org/10.1016/j.ast.2016.05.001
  18. Ganesan, R. and Liu, D.Y. (2008), "Progressive failure and post-buckling response of tapered composite plates under uni-axial compression", Compos. Struct., 82(2), 159-176. https://doi.org/10.1016/j.compstruct.2006.12.014
  19. Ghosh, A. and Chakravorty, D. (2014), "Prediction of progressive failure behaviour of composite skewed hypar shells using finite element method", J. Struct., Article ID 147578, 1-8. http://dx.doi.org/10.1155/2014/147578
  20. Ghosh, A. and Chakravorty, D. (2017), "Failure analysis of civil Engineering composite shell roofs", Proce. Eng., 173, 1642-1649. https://doi.org/10.1016/j.proeng.2016.12.258
  21. Gohari, S., Golshan, A., Mostakhdemin, M., Mozafari, F. and Momenzadeh, A. (2012), "Failure strength of thin-walled cylindrical GFRP composite shell against static internal and external pressure for various volumetric fiber fraction", Int. J. App. Phy. Math., 2, 111-116.
  22. Gohari, S., Sharifi, S., Vrcelj, Z. and Yahya, M.Y. (2015), "First ply failure prediction of an unsymmetrical laminated ellipsoidal woven GFRP composite shell with incorporated surface-bounded sensors and internally pressurized", Compos.-Part B, 77, 502-518. https://doi.org/10.1016/j.compositesb.2015.03.058
  23. Kam, T.Y., Sher, H.F., Chao, T.N. and Chang, R.R. (1996), "Predictions of deflection and first-ply failure load of thin laminated composite plates via the finite element approach", Int. J. Solids Struct., 33(3), 375-398. https://doi.org/10.1016/0020-7683(95)00042-9
  24. Kelly, G. and Hallstrom, S. (2005), "Strength and failure mechanisms of composite laminates subject to localised transverse loading", Compos. Struct., 69(3), 301-314. https://doi.org/10.1016/j.compstruct.2004.07.008
  25. Kober, M. and Kuhhorn, A. (2012), "Comparison of different failure criteria for fiber-reinforced plastics in terms of fracture curves for arbitrary stress combinations", Compos. Sci. Tech., 72, 1941-1951. https://doi.org/10.1016/j.compscitech.2012.08.007
  26. Kumar, A., Chakrabarti, A. and Ketkar, M. (2013), "Analysis of laminated composite skew shells using higher order shear deformation theory", Latin Am. J. Sol. Struct., 10, 891-919. http://dx.doi.org/10.1590/S1679-78252013000500003
  27. Lal, A., Singh, B.N. and Patel, D. (2012), "Stochastic nonlinear failure analysis of laminated composite plates under compressive transverse loading", Compos. Struct., 94(3), 1211-1223. https://doi.org/10.1016/j.compstruct.2011.11.018
  28. Lee, C.S., Kim, J.H., Kim, S.K., Ryu, D.M. and Lee, J.M. (2015), "Initial and progressive failure analyses for composite laminates using Puck failure criterion and damage-coupled finite element method", Compos. Struct., 121, 406-419. https://doi.org/10.1016/j.compstruct.2014.11.011
  29. Lopez, R.H., Luersen, M.A. and Cursi, E.S. (2009), "Optimization of laminated composites considering different failure criteria", Compos.-Part B, 40, 731-740. https://doi.org/10.1016/j.compositesb.2009.05.007
  30. Matthias, D.H. and Kroplin, B. (2012), "Finite element implementation of Puck's failure theory for fibre-reinforced composites under three-dimensional stress", J. Compos. Mat., 46(19-20), 2485-2513. https://doi.org/10.1177/0021998312451480
  31. Nali, P. and Carrera, E. (2012), "A numerical assessment on twodimensional failure criteria for composite layered structures", Compos.-Part B, 43, 280-290. https://doi.org/10.1016/j.compositesb.2011.06.018
  32. Neogi, S.D., Karmakar, A. and Chakravorty, D. (2011), "Impact response of simply supported skewed hypar shell roofs by finite element", J. Reinf. Plast. Compos., 30(21), 1795-1805. https://doi.org/10.1177/0731684411418865
  33. Oterkus, E., Madenci, E., Weckner, O., Silling, S., Bogert, P. and Tessler, A. (2012), "Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot", Compos. Struct., 94, 839-850. https://doi.org/10.1016/j.compstruct.2011.07.019
  34. Owen, D.R.J. and Hinton, E. (1980), Finite Elements in Plasticity: Theory and Practice, Pineridge Press Limited, UK, Ch. 6, pp. 157-214.
  35. Pal, P. and Ray, C. (2002), "Progressive failure analysis of laminated composite plates by finite element method", J. Reinf. Plast. Compos., 21(16), 1505-1513. https://doi.org/10.1177/0731684402021016488
  36. Palazotto, A.N. and Dennis, S.T. (1992), Nonlinear Analysis of Shell Structures, AIAA Education Series, American Institute of Aeronautics and Astronautics (AIAA) Washington, DC, pp. 131-154.
  37. Priyadharshani, S.A., Prasad, A.M. and Sundaravadivelu, R. (2017), "Analysis of GFRP stiffened composite plates with rectangular cutout", Compos. Struct., 169, 42-51. https://doi.org/10.1016/j.compstruct.2016.10.054
  38. Prusty, B.G. (2005), "Progressive failure analysis of laminated unstiffened and stiffened composite panels", J. Reinf. Plast. Compos., 24(6), 633-642. https://doi.org/10.1177/0731684405045023
  39. Qatu, M.S. and Leissa, A.W. (1991), "Vibration studies for laminated composite twisted cantilever plates", Int. J. Mech. Sci., 33(11), 927-940. https://doi.org/10.1016/0020-7403(91)90012-R
  40. Reddy, J.N. (2004), Mechanics of laminated composite plates and shells: Theory and Analysis, CRC Press, Second Edition, Boca Raton, FL, USA.
  41. Reddy, Y.S.N. and Reddy, J.N. (1992), "Linear and nonlinear failure analysis of composite laminates with transverse shear", Compos. Sci. Tech., 44, 227-255. https://doi.org/10.1016/0266-3538(92)90015-U
  42. Reddy, Y.N.S., Moorthy, C.M.D. and Reddy, J.N. (1995), "Nonlinear progressive failure analysis of laminated composite plates", Int. J. Nonlinear Mech., 30, 629-649. https://doi.org/10.1016/0020-7462(94)00041-8
  43. Reinoso, J. and Blazquez, A. (2016), "Application and finite element implementation of 7-parameter shell element for geometrically nonlinear analysis of layered CFRP composites", Compos. Struct., 139, 263-276. https://doi.org/10.1016/j.compstruct.2015.12.009
  44. Reinoso, J., Catalanotti, G., Blazquez, A., Areias, P., Camanho, P.P. and Paris, F. (2017), "A consistent anisotropic damage model for laminated fiber-reinforced composites using the 3D-version of the Puck failure criterion", Int. J. Sol. Struct., 126, 37-53. https://doi.org/10.1016/j.ijsolstr.2017.07.023
  45. Sahoo, S. and Chakravorty, D. (2004), "Finite element bending behaviour of composite hyperbolic paraboloidal shells with various edge conditions", J. Str. Ana. Eng. Des., 39(5), 499-513. https://doi.org/10.1243/0309324041896434
  46. Singh, S.B. and Kumar, A. (1998), "Post buckling response and failure of symmetric laminates under in-plane shear", Compos. Sci. Tech., 58, 1949-1960. https://doi.org/10.1016/S0266-3538(98)00032-3
  47. Singh, S.B., Kumar, A. and Iyengar, N.G.R. (1997), "Progressive failure of symmetrically laminated plates under uni-axial compression", Struct. Eng. Mech., Int. J., 5(4), 433-450. https://doi.org/10.12989/sem.1997.5.4.433
  48. Singh, S.B., Kumar, A. and Iyengar, N.G.R. (1998a), "Progressive failure of symmetric laminates under in-plane shear: I-Positive shear", Struct. Eng. Mech., Int. J., 6(2), 143-159. https://doi.org/10.12989/sem.1998.6.2.143
  49. Singh, S.B., Kumar, A. and Iyengar, N.G.R. (1998b), "Progressive failure of symmetric laminates under in-plane shear: II-Negative shear", Struct. Eng. Mech., Int. J., 6(7), 757-772. https://doi.org/10.12989/sem.1998.6.7.757
  50. Soni, S.R. (1983), "A comparative study of failure envelops in composite laminates", J. Reinf. Plast. Compos., 2, 34-42. https://doi.org/10.1177/073168448300200104
  51. Xiong, J., Ghosh, R., Ma, L., Vaziri, A., Wang, Y. and Wu, L. (2014), "Sandwich-walled cylindrical shells with lightweight metallic lattice truss cores and carbon fiber-reinforced composite face sheets", Compos.-Part A, 56, 226-238. https://doi.org/10.1016/j.compositesa.2013.10.008
  52. Xue, J., Ding, Y., Han, F. and Liu, R. (2013), "An extension of Karman-Donnell's theory for non-shallow, long cylindrical shells undergoing large deflection", Europ. J. Mech. A/Solids, 37, 329-335. https://doi.org/10.1016/j.euromechsol.2012.08.004
  53. Xue, J., Xia, F., Ye, J., Zhang, J., Chen, S., Xiong, Y., Tan, Z., Liu, R. and Yuan, H. (2017), "Multiscale studies on the nonlinear vibration of delaminated composite laminates-global vibration mode with micro buckles on the interfaces", Sci. Reports, 7 (1), 4468. https://doi.org/10.1038/s41598-017-04570-3
  54. Xue, J., Jin, F., Zhang, J., Li, P., Xia, F., Xu, J., Liu, R. and Yuan, H. (2019), "Post-buckling induced delamination propagation of composite laminates with bi-nonlinear properties and anti-penetrating interaction effects", Compos. Part B, 166, 148-161. https://doi.org/10.1016/j.compositesb.2018.11.082
  55. Yang, Q.J. and Hayman, B. (2015), "Simplified ultimate strength analysis of compressed composite plates with linear material degradation", Compos.-Part B, 69, 13-21. https://doi.org/10.1016/j.compositesb.2014.09.016