DOI QR코드

DOI QR Code

Rheological properties of arabinogalactan solutions isolated from the legumes

콩류 아라비노갈락탄 용액의 유변학적 성질

  • 김경이 (서일대학교 생명화공학과) ;
  • 김춘영 (영남대학교 식품영양학과)
  • Received : 2019.07.01
  • Accepted : 2019.07.30
  • Published : 2019.08.31

Abstract

The aim of this study was to investigate the rheological properties of arabinogalactans (AGs) solution isolated from moth bean (MB), navy bean (NB), and soybean (SB) including monosaccharide compositions, intrinsic viscosity, steady shear and dynamic shear rheological properties. The major monosaccharides in MB, NB, and SB were arabinose (64.8, 51.4, and 42.6%) and galactose (13.4, 19.6, and 46.2%). The yield stresses for 5% (w/v) NB and 2.5% (w/v) SB solutions were assessed as 2.10 Pa and 1.98 Pa, respectively, but in case of MB solution, it was observed to be negligible. While 5% MB solution showed rheopectic property, 5% NB and SB solutions showed thixotropic properties. As a result of frequency sweep experiment, the G' values in 2.5% MB and NB were larger than the G" value showed but 2.5% SB exhibited G" value greater than G'. These results would be useful for future application as a food additive in the food industry.

Moth bean (MB), navy bean (NB), soybean (SB)에서 분리된 arabinogalactans (AGs)의 성분과 유변학적 성질을 조사하였다. AGs의 주성분은 갈락토즈(galactose)와 아라비노즈(arabinose)로 총합이 약 59-89%를 나타내었고 갈락토즈와 아라비노즈의 비율(G/A)은 MB는 0.21, NB는 0.38, SB는 1.09로 계산되었다. 유변학적 거동을 살펴보기 위하여 1-5% (w/v) AG 용액들의 전단속도(shear rate) $0.1-100s^{-1}$에 따르는 전단응력(shear stress)을 측정하였을 때 MB의 경우 항복점(yield stress)이 없었으나, 5% NB 용액에서는 2.10 Pa, 2.5% SB용액에서는 1.98 Pa의 항복점이 각각 측정되었다. 순환 전단 측정 결과 5% MB 용액의 경우는 점성도는 전단 속도가 증가할 때에 비해 감소할 때 더 큰 값을 나타내어 rheopexy인 유변학적 성질이 나타났다. 반면 5% NB와 SB 용액의 유변학적 성질은 전단속도가 증가할 때의 점성도가 감소할 때의 점성도보다 더 큰 값을 가지는 thixotrophy로 나타났다. 저장탄성률(G'), 손실탄성률(G")을 측정한 결과 MB 분산액은 탄성율이, NB 분산액은 점성율이 높게 나타났고 SB 분산액은 비교적 낮은 농도에서는 탄성율이 비교적 높은 농도에서는 점성율이 크게 나타났다. 사전전단(pre-shearing)을 $500s^{-1}$에서 600초 동안 가공 후에 실시한 진동 테스트로 AGs의 구조 회복을 살펴본 결과 MB 5% 용액은 G', G" 모두 감소하였고 특히 탄성 부분이 많이 감소하였다. NB 5% 용액의 G'는 감소하였으나 MB에 비하여 그 폭은 작았고 G"는 거의 변화가 없었다. SB 2.5% 용액의 G', G" 모두 증가하는 현상을 나타내었다. AGs 용액의 전단 응력과 진동수에 따라 나타나는 점성 및 탄성의 변화 현상을 이용하여 식품 및 약품 제조에 첨가제 및 가소제로서 물질의 특성을 결정하는데 도움을 줄 수 있다. MB, NB, SB 물질의 유변학적 거동과 화학적 구조 관계를 밝히기 위하여 알디톨 아세테이트 결합 분석과 NMR분석(de Oliveira 등, 2013; Wang 등, 2015)을 통한 분자구조연구를 추가적으로 진행하고자 한다.

Keywords

SPGHB5_2019_v51n4_330_f0001.png 이미지

Fig. 1. Steady shear stress of arabionogalactan solution isolated from moth bean (MB), navy bean (NB), and soybean (SB) as a function of shear rate up and down.

SPGHB5_2019_v51n4_330_f0002.png 이미지

Fig. 2. Viscoelastic properties of arabionogalactan solution isolated from moth bean (MB), navy bean (NB), and soybean (SB) at the linear viscoelastic range with 1.0 rad/s and 3% strain.

SPGHB5_2019_v51n4_330_f0003.png 이미지

Fig. 3 Storage modulus (G') and loss modulus (G'') as a function of time for arabinogalactan solution of moth bean (MB), navy bean (NB), and soybean (SB) after pre-shearing at 500 s−1 shear rate.

Table 1. Monosaccharide composition of arabinogalactan from moth bean, navy bean, and soybean

SPGHB5_2019_v51n4_330_t0001.png 이미지

Table 2. Hysteresis of viscosity of 5% arabinogalactan solution isolated from moth bean, navy bean, and soybean

SPGHB5_2019_v51n4_330_t0002.png 이미지

References

  1. Barnes HA. Thixotropy-a review. J. Non-Newton. Fluid. 70: 1-33 (1997) https://doi.org/10.1016/S0377-0257(97)00004-9
  2. Brummer Y, Kaviani M, Tosh SM. Structural and functional characteristics of dietary fibre in beans, lentils, peas and chickpeas. Food Res. Int. 67: 117-125 (2015) https://doi.org/10.1016/j.foodres.2014.11.009
  3. Castellani O, Guibert D, Al-Assaf S, Axelos M, Phillips GO, Anton M. Hydrocolloids with emulsifying capacity. Part 1-Emulsifying properties and interfacial characteristics of conventional (Acacia senegal (L.) Willd. var. senegal) and matured (Acacia (sen) SUPER GUM$^{TM}$) Acacia senegal. Food Hydrocolloid. 24: 193-199 (2010) https://doi.org/10.1016/j.foodhyd.2009.09.005
  4. Chang K, Chang D, Phatak L. Effect of germination on oligosaccharides and nonstarch polysaccharides in navy and pinto beans. J. Food Sci. 54: 1615-1619 (1989) https://doi.org/10.1111/j.1365-2621.1989.tb05173.x
  5. Chronakis IS, Kasapis S. Food applications of biopolymer-theory and practice. pp. 75-109. In: Developments in Food Science. Elsevier (1995)
  6. Daguet D, Pinheiro I, Verhelst A, Possemiers S, Marzorati M. Arabinogalactan and fructooligosaccharides improve the gut barrier function in distinct areas of the colon in the simulator of the human intestinal microbial ecosystem. J. Funct. Food. 20: 369-379 (2016) https://doi.org/10.1016/j.jff.2015.11.005
  7. de Oliveira, AJB, Cordeiro LM, Gonalves RAC, Ceole LF, Ueda-Nakamura T, Iacomini M. Structure and antiviral activity of arabinogalactan with (1${\rightarrow}$6)-${\beta}$-d-galactan core from Stevia rebaudiana leaves. Carbohyd. Polym. 94: 179-184 (2013) https://doi.org/10.1016/j.carbpol.2012.12.068
  8. Dion C, Chappuis E, Ripoll C. Does larch arabinogalactan enhance immune function? A review of mechanistic and clinical trials. Nutr. Metab. 13: 28 (2016) https://doi.org/10.1186/s12986-016-0086-x
  9. Estevez JM, Kieliszewski MJ, Khitrov N, Somerville C. Characterization of synthetic hydroxyproline-rich proteoglycans with arabinogalactan protein and extensin motifs in arabidopsis. Plant Physiol. 142: 458-470 (2006) https://doi.org/10.1104/pp.106.084244
  10. Furuta H, Maeda H. Rheological properties of water-soluble soybean polysaccharides extracted under weak acidic condition. Food Hydrocolloid. 13: 267-274 (1999) https://doi.org/10.1016/S0268-005X(99)00009-0
  11. Haq S, Adams G. Structure of an arabinogalactan from Tamarack (Larix laricina). Can. J. Chem. 39: 1563-1573 (1961) https://doi.org/10.1139/v61-199
  12. Jimnez-Avalos H, Ramos-Ramrez E, Salazar-Montoya J. Viscoelastic characterization of gum arabic and maize starch mixture using the Maxwell model. Carbohyd. Polym. 62: 11-18 (2005) https://doi.org/10.1016/j.carbpol.2005.07.007
  13. Li X, Fang Y, Al-Assaf S, Phillips GO, Nishinari K, Zhang H. Rheological study of gum arabic solutions: Interpretation based on molecular self-association. Food Hydrocolloid. 23: 2394-2402 (2009) https://doi.org/10.1016/j.foodhyd.2009.06.018
  14. Meer C. Handbook of water-soluble gums and resins. New York: McGraw-Hill (1980)
  15. Mewis J, Wagner NJ. Thixotropy. Adv. Colloid Interfac. 147: 214-227 (2009) https://doi.org/10.1016/j.cis.2008.09.005
  16. Motamedzadegan A, Naeli MH, Maghsoudlou E, Bahri SMH, Belgheisi S, Babaei ZEA. Effects of basal seed gum and carboxymethyl cellulose gum on rheological properties and flow behavior of pomegranate paste. J. Food Meas. Charact. 13: 87-96 (2019) https://doi.org/10.1007/s11694-018-9921-2
  17. Nunes FM, Coimbra MA, Duarte AC, Delgadillo I. Foamability, foam stability, and chemical composition of espresso coffee as affected by the degree of roast. J. Agr. Food Chem. 45: 3238-3243 (1997) https://doi.org/10.1021/jf970009t
  18. Redgwell R, Schmitt C, Beaulieu M, Curti D. Hydrocolloids from coffee: physicochemical and functional properties of an arabinogalactan-protein fraction from green beans. Food Hydrocolloid. 19: 1005-1015 (2005) https://doi.org/10.1016/j.foodhyd.2004.12.010
  19. Renkema, JMS. Relations between rheological properties and network structure of soy proteins gels. Food Hydrocolloid. 18: 39-47 (2004) https://doi.org/10.1016/S0268-005X(03)00040-7
  20. Salazar-Montoya J, Jimenez-Avalos H, Ramos-Ramirez E. Effects of gum arabic concentration and soy proteins on the flow and viscoelasticity of their dispersion. Int. J. Food Prop. 15: 891-902 (2012) https://doi.org/10.1080/10942912.2010.506099
  21. Sanchez C, Renard D, Robert P, Schmitt C, Lefebvre J. Structure and rheological properties of acacia gum dispersions. Food Hydrocolloid. 16: 257-267 (2002) https://doi.org/10.1016/S0268-005X(01)00096-0
  22. Sanchez C, Schmitt C, Kolodziejczyk E, Lapp A, Gaillard C, Renard D. The acacia gum arabinogalactan fraction is a thin oblate ellipsoid: a new model based on small-angle neutron scattering and ab initio calculation. Biophys J. 94: 629-639 (2008) https://doi.org/10.1529/biophysj.107.109124
  23. Singh N, Kaur A, Katyal M, Bhinder S, Ahlawat AK, Singh AM. Diversity in quality traits amongst Indian wheat varieties II: Paste, dough and muffin making properties. Food Chem. 197:316-324 (2016) https://doi.org/10.1016/j.foodchem.2015.10.035
  24. Susheelamma N, Rao M. Isolation and characterization of arabinogalactan from black gram (Phaseolus mungo). J. Agr. Food Chem. 26: 1434-1437 (1978) https://doi.org/10.1021/jf60220a048
  25. Susheelamma N, Rao M.. Functional role of the arabinogalactan of black gram (Phaseolus mungo in the texture of leavened foods (steamed puddings). J. Food Sci. 44: 1310-1313 (1979) https://doi.org/10.1111/j.1365-2621.1979.tb06426.x
  26. Van den Bulck K, Swennen K, Loosveld AMA, Courtin CM, Brijs K, Proost P, Van Damme J, Van Campenhout S, Mort A, Delcour JA. Isolation of cereal arabinogalactan-peptides and structural comparison of their carbohydrate and peptide moieties. J. Cereal Sci. 41: 59-67 (2005) https://doi.org/10.1016/j.jcs.2004.10.001
  27. Wang H, Shi S, Bao B, Li X, Wang S. Structure characterization of an arabinogalactan from green tea and its anti-diabetic effect. Carbohyd. Polym. 124: 98-108 (2015) https://doi.org/10.1016/j.carbpol.2015.01.070
  28. White E. The constitution of arabo-galactan. IV. The structure of the repeating unit. J. Am. Chem. Soc. 64: 2838-2842 (1942) https://doi.org/10.1021/ja01264a034
  29. Wolfrom M, Patin D. Carbohydrates of the coffee bean. IV. An Arabinogalactan1. J. Organic Chem. 30: 4060-4063 (1965) https://doi.org/10.1021/jo01023a017