FIGURE 4. For tetrahedral, octahedral, or icosahedral singularities of type (3, 2); Bhupal-Ono [3, Figure 3], PPSU [11, Figure 6]
FIGURE 5. For tetrahedral, octahedral, or icosahedral singularities of type (3; 1); Bhupal-Ono [3, Figure 5, 6, 10], PPSU [11, Figure 7]
FIGURE 6. T6(5-2)+1[2] :
FIGURE 7. T6(5-2)+1[3] :
FIGURE 8. T6(4-2)+3[3] :
FIGURE 9. T6(4-2)+3[4] :
FIGURE 10. T6(5-2)+3[2] :
FIGURE 11. T6(5-2)+3[4] :
FIGURE 12. T6(5-2)+3[3] :
FIGURE 13. T6(5-2)+3[5] :
FIGURE 14. O12(5-2)+1[2] :
FIGURE 15. O12(5-2)+1[3] :
FIGURE 16. O12(3-2)+7[3] :
FIGURE 17. O12(3-2)+7[4] :
FIGURE 18. O12(5-2)+7[3] :
FIGURE 19. O12(5-2)+7[4] :
FIGURE 20. I30(5-2)+1[2] :
FIGURE 21. I30(5-2)+1[3] :
FIGURE 22. I30(4-2)+7[3] :
FIGURE 23. I30(4-2)+7[4] :
FIGURE 24. I30(5-2)+7[5] :
FIGURE 25. I30(5-2)+7[6] :
FIGURE 25. I30(5-2)+7[2] :
FIGURE 27. I30(5-2)+7[3] :
FIGURE 28. I30(6-2)+7[3] :
FIGURE 29. I30(6-2)+7[4] :
FIGURE 30. I30(4-2)+13[4] :
FIGURE 31. I30(4-2)+13[5] :
FIGURE 32. I30(5-2)+13[2] :
FIGURE 33. I30(5-2)+13[4] :
FIGURE 34. I30(5-2)+13[3] :
FIGURE 35. I30(5-2)+13[5] :
FIGURE 36. I30(5-2)+19[5] :
FIGURE 37. I30(5-2)+19[3] :
FIGURE 1. The dual graphs of the minimal resolutions of non-cyclic quotient singularities
FIGURE 2. The dual graphs of the compactifying divisors of non-cyclic quotient singularities
FIGURE 3. The dual graph of
TABLE 1. The number of P -resolutions; Stevens [16, Table 1], cf. PPSU [11, Remark 6.11]
TABLE 2.
TABLE 3. Case I vs Case II
참고문헌
- M. Artin, Algebraic construction of Brieskorn's resolutions, J. Algebra 29 (1974), 330-348. https://doi.org/10.1016/0021-8693(74)90102-1
- K. Behnke and J. A. Christophersen, M-resolutions and deformations of quotient singularities, Amer. J. Math. 116 (1994), no. 4, 881-903. https://doi.org/10.2307/2375004
- M. Bhupal and K. Ono, Symplectic fillings of links of quotient surface singularities, Nagoya Math. J. 207 (2012), 1-45. https://doi.org/10.1017/S0027763000022297
- M. Bhupal and K. Ono, Symplectic fillings of links of quotient surface singularities corrigendum. Nagoya Math. J. 225 (2017), 207-212. https://doi.org/10.1017/nmj.2016.42
- E. Brieskorn, Rationale Singularitaten komplexer Flachen, Invent. Math. 4 (1967/1968), 336-358. https://doi.org/10.1007/BF01425318
- P. Hacking, J. Tevelev, and G. Urzua, Flipping surfaces, J. Algebraic Geom. 26 (2017), no. 2, 279-345. https://doi.org/10.1090/jag/682
- J. Kollar and S. Mori, Classification of three-dimensional ips, J. Amer. Math. Soc. 5 (1992), no. 3, 533-703. https://doi.org/10.2307/2152704
- J. Kollar and N. I. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), no. 2, 299-338. https://doi.org/10.1007/BF01389370
- P. Lisca, On symplectic fillings of lens spaces, Trans. Amer. Math. Soc. 360 (2008), no. 2, 765-799. https://doi.org/10.1090/S0002-9947-07-04228-6
-
P. Orlik and P. Wagreich, Isolated singularities of algebraic surfaces with
$\mathbb{C}^{\ast}$ action, Ann. of Math. (2) 93 (1971), 205-228. https://doi.org/10.2307/1970772 - H. Park, J. Park, D. Shin, and G. Urzua, Milnor fibers and symplectic fillings of quotient surface singularities, Adv. Math. 329 (2018), 1156-1230. https://doi.org/10.1016/j.aim.2018.03.002
-
H. Pinkham, Normal surface singularities with
$C^{\ast}$ action, Math. Ann. 227 (1977), no. 2, 183-193. https://doi.org/10.1007/BF01350195 -
H. Pinkham, Deformations of normal surface singularities with
$C^{\ast}$ action, Math. Ann. 232 (1978), no. 1, 65-84. https://doi.org/10.1007/BF01420623 - O. Riemenschneider, Deformationen von Quotientensingularitaten (nach zyklischen Gruppen), Math. Ann. 209 (1974), 211-248. https://doi.org/10.1007/BF01351850
- J. Stevens, On the versal deformation of cyclic quotient singularities, in Singularity theory and its applications, Part I (Coventry, 1988/1989), 302-319, Lecture Notes in Math., 1462, Springer, Berlin, 1991. https://doi.org/10.1007/BFb0086390
- J. Stevens, Partial resolutions of quotient singularities, Manuscripta Math. 79 (1993), no. 1, 7-11. https://doi.org/10.1007/BF02568325
- G. Urzua, Identifying neighbors of stable surfaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), no. 4, 1093-1122.
- J. M. Wahl, Equisingular deformations of normal surface singularities. I, Ann. of Math. (2) 104 (1976), no. 2, 325-356. https://doi.org/10.2307/1971049