DOI QR코드

DOI QR Code

Multi-criteria analysis of five reinforcement options for Peruvian confined masonry walls

  • Tarque, Nicola (Department of Civil Engineering, Pontificia Universidad Catolica del Peru) ;
  • Salsavilca, Jhoselyn (Department of Civil Engineering, Pontificia Universidad Catolica del Peru) ;
  • Yacila, Jhair (Department of Civil Engineering, Pontificia Universidad Catolica del Peru) ;
  • Camata, Guido (Department of Engineering and Geology, University G.d'Annunzio of Chieti and Pescara)
  • Received : 2019.02.01
  • Accepted : 2019.06.06
  • Published : 2019.08.25

Abstract

In Peru, construction of dwellings using confined masonry walls (CM) has a high percentage of acceptance within many sectors of the population. It is estimated that only in Lima, 80% of the constructions use CM and at least 70% of these are informal constructions. This mean that they are built without proper technical advice and generally have a high seismic vulnerability. One way to reduce this vulnerability is by reinforcing the walls. However, despite the existence of some reinforcement methods in the market, not all of them can be applied massively because there are other parameters to take into account, as economical, criteria for seismic improvement, reinforcement ratio, etc. Therefore, in this paper the feasibility of using five reinforcement techniques has been studied and compared. These reinforcements are: welded mesh (WM), glass fiber reinforced polymer (GFRP), carbon fiber reinforced polymer (CFRP), steel bar wire mesh (CSM), steel reinforced grout (SRG). The Multi-Criteria Decision Making (MCDM) method can be useful to evaluate the most optimal strengthening technique for a fast, effective and massive use plan in Peru. The results of using MCDM with 10 criteria indicate that the Carbon Fiber Reinforced Polymer (CFRP) and Steel Reinforced Grout (SRG) methods are the most suitable for a massive reinforcement application in Lima.

Keywords

References

  1. Ahmad, N., Crowley, H., Pinho, R. and Ali, Q. (2010), "Displacement-based earthquake loss assessment of masonry buildings in Mansehra city, Pakistan", J. Earthq. Eng., 14(1), 1-37. https://doi.org/10.1080/13632461003651794.
  2. Alcocer, S., Arias, J. and Vazquez, A. (2003), "The new Mexico City building code requirements for design and construction of masonry structures", Proceedings of the Ninth North American Masonry Conference, Clemson, South Carolina, 656-667.
  3. Bhattacharya, S., Nayak, S. and Chandra, S. (2013), "A critical review of retrofitting methods for unreinforced masonry structures", Int. J. Disast. Risk Reduct., 7, 51-67. https://doi.org/10.1016/j.ijdrr.2013.12.004.
  4. Brzev, S. and Perez, J. (2014), "Masonry construction around the world: an overview", Short Course on Seismic Design of Reinforced and Confined Masonry Buildings.
  5. Buchan, P. and Chen, J. (2007), "Blast resistance of FRP composites and polymer strengthened concrete and masonry structures: A state of the art review", Compos. Part B: Eng., 38, 509-522. https://doi.org/10.1016/j.compositesb.2006.07.009.
  6. Cabral-Fonseca, S., Correia, J.R., Custodio, J., Silva, H.M., Machado, A.M. and Sousa, J. (2018), "Durability of FRPconcrete bonded joints in structural rehabilitation: A review", Int. J. Adhes. Adhes., 83, 153-167. https://doi.org/10.1016/j.ijadhadh.2018.02.014.
  7. Carloni, C. (2017), "Prove di compressione diagonale per la valutazione dell'efficacia di rinforzi strutturali applicati su pannelli murari di laterizio e malta di calce. Convenzione di ricerca con kerakoll spa rapporto di prova", Universita di Bologna.
  8. Caterino, N., Iervolino, I., Manfredi, G. and Cosenza, E. (2006), "Multi-criteria decision making for seismic retrofitting of an underdesigned RC structure", First European Conference on Earthquake Engineering and Seismology (a joint event of the 13th ECEE 30th General Assembly of the ESC), Geneva, Switzerland.
  9. Corradi, M., Borri, A. and Vignoli, A. (2002), "Strengthening techniques tested on masonry structures struck by the Umbria-Marche earthquake of 1997-1998", Compos. Part B: Eng., 16, 229-239. https://doi.org/10.1016/S0950-0618(02)00014-4.
  10. De Santis, S., Ceroni, F.G., De Felice, G., Fagone, M., Ghiassi, B., Kwiecie, A., Lignola, G.P., Morganti, M., Santandrea, M., Valluzzi, M.R. and Viskovic, A. (2017), "Round Robin Test on tensile and bond behavior of Steel Reinforced Grout systems", Compos. Part B: Eng., 127, 100-120. https://doi.org/10.1016/j.compositesb.2017.03.052.
  11. FEMA (2009), Unreinforced Masonry Buildings and Earthquakes: Developing Successful Risk Reduction Programs, Federal Emergency Management Agency.
  12. Gattesco, N. and Boem, I. (2017), "Characterization tests of GFRM coating as a strengthening technique for masonry buildings", Compos. Struct., 165, 209-222. https://doi.org/10.1016/j.compstruct.2017.01.043.
  13. Ghiassi, B., Oliveira, D., Marques, V., Soares, E. and Maljaee, H. (2016), "Multi-level characterization of steel reinforced mortars for strengthening of masonry structures", J. Mater. Des., 110, 903-913. https://doi.org/10.1016/j.matdes.2016.08.034.
  14. Hwang, C.L. and Yoon, K. (1981), "Multiple attribute decision making", Lecture Notes in Economics and Mathematical Systems.
  15. INEI (2017), Perfil Sociodemografico del Peru: Censos Nacionales 2007: XI de Poblacion y VI de Vivienda.
  16. Lodi, S., Alam, N. and Ahmed, M. (2014), "Seismic vulnerability assessment of existing buildings of Pakistan, Earthquake Model for Middle East Region (EMME)", Department of Civil Engineering, NED University of Engineering & Technology, Karachi, Pakistan.
  17. Lovon H., Tarque N., Silva, V. and Yepes-Estrada, C. (2018), "Development of fragility curves for confined masonry buildings in Lima, Peru", Earthq. Spectra, 34(3), 1339-1361. https://doi.org/10.1193/090517EQS174M.
  18. Lujan, M. (2016), "Refuerzo de muros de albanileria confinada con mallas de acero", Bachelor Thesis, School of Science and Engineering. Pontificia Universidad Catolica del Peru, Lima, Peru.
  19. NTP E.070 (2006), "Reglamento nacional de edificaciones: Albanileria", Ministerio de Vivienda, Construccion y Saneamiento-SENCICO.
  20. Popa, V., Pascu, R., Papurcu, A. and Albota, E. (2016), "Retrofitting of squat masonry walls by FRP grids bonded by cement-based mortar", Earthq. Struct., 10(1), 125-139. https://doi.org/10.12989/eas.2016.10.1.125.
  21. Remki, M., kehila, F., Bechtoula, H. and Bourzam, A. (2016), "Seismic vulnerability assessment of composite reinforced concrete-masonry building", Earthq. Struct., 11(2), 371-386. http://dx.doi.org/10.12989/eas.2016.11.2.371.
  22. Saaty, T. (1994), "How to make a decision: The analytic hierarchy process", Interf., 24(6), 19-43. https://doi.org/10.1016/0377-2217(90)90057-I.
  23. Salsavilca, J., Yacila, J. and Tarque, N. (2019), "Aplicacion de la fibra de acero galvanizado para el reforzamiento estructural de muros de albanileria confinada ante cargas ciclicas en su plano", MSc. Thesis, Civil Engineering Department, Pontificia Universidad Catolica del Peru, Lima, Peru.
  24. San Bartolome, A. and Castro, A. (2002), "Reparacion de un muro de albanileria confinada mediante malla electrosoldada", Internal Report, Civil Eng. Division, School of Science and Engineering, Pontificia Universidad Catolica del Peru, Lima, Peru.
  25. San Bartolome, A. and Coronel, C. (2009), "Reparacion y reforzamiento de un muro de albanileria confinada mediante fibra de carbono", Internal Report, Civil Eng. Division, School of Science and Engineering, Pontificia Universidad Catolica del Peru, Lima, Peru.
  26. San Bartolome, A. and Loayza, J. (2004), "Reparacion y reforzamiento con varillas de fibra de vidrio en un muro de albanileria confinada", Internal Report, Civil Eng. Division, School of Science and Engineering, Pontificia Universidad Catolica del Peru, Lima, Peru.
  27. San Bartolome, A., Castro, A., Vargas, B. and Quiun, D. (2008), "Repair of reinforced masonry walls with shear failure", 14th International Brick and Block Masonry Conference, Sydney, Australia, in CDROM, February.
  28. Smyrou, E. (2015), "FRP versus traditional strengthening on a typical mid-rise Turkish RC building", Earthq. Struct., 9(5), 1069-1089. http://dx.doi.org/10.12989/eas.2015.9.5.1069.
  29. Srechai, J., Leelataviwat, S., Wongkaew, A. and Lukkunaprasit, P.(2017), "Experimental and analytical evaluation of a low-cost seismic retrofitting method for masonry-infilled non-ductile RC frames", Earthq. Struct., 12(6), 699-712. https://doi.org/10.12989/eas.2017.12.6.699.
  30. Yacila, J., Salsavilca J., Tarque, N., Casadei P. and Camata, G. (2019), "The use of SRG to improve the lateral displacement ductility of confined masonry walls", Proceedings of the 13NAMC, Paper number 048.

Cited by

  1. Evaluation of Reinforced Adobe Techniques for Sustainable Reconstruction in Andean Seismic Zones vol.13, pp.9, 2019, https://doi.org/10.3390/su13094955
  2. Overlapped joints in Textile Reinforced Concrete with UHPC matrix: An experimental investigation vol.54, pp.4, 2019, https://doi.org/10.1617/s11527-021-01739-1
  3. Effect of TRC and F/TRC Strengthening on the Cracking Behaviour of RC Beams in Bending vol.14, pp.17, 2019, https://doi.org/10.3390/ma14174863