DOI QR코드

DOI QR Code

Reliability assessment of semi-active control of structures with MR damper

  • Received : 2019.03.04
  • Accepted : 2019.04.19
  • Published : 2019.08.25

Abstract

Structural control systems have uncertainties in their structural parameters and control devices which by using reliability analysis, uncertainty can be modeled. In this paper, reliability of controlled structures equipped with semi-active Magneto-Rheological (MR) dampers is investigated. For this purpose, at first, the effect of the structural parameters and damper parameters on the reliability of the seismic responses are evaluated. Then, the reliability of MR damper force is considered for expected levels of performance. For sensitivity analysis of the parameters exist in Bouc- Wen model for predicting the damper force, the importance vector is utilized. The improved first-order reliability method (FORM), is used to reliability analysis. As a case study, an 11-story shear building equipped with 3 MR dampers is selected and numerically obtained experimental data of a 1000 kN MR damper is assumed to study the reliability of the MR damper performance for expected levels. The results show that the standard deviation of random variables affects structural reliability as an uncertainty factor. Thus, the effect of uncertainty existed in the structural model parameters on the reliability of the structure is more than the uncertainty in the damper parameters. Also, the reliability analysis of the MR damper performance show that to achieve the highest levels of nominal capacity of the damper, the probability of failure is greatly increased. Furthermore, by using sensitivity analysis, the Bouc-Wen model parameters which have great importance in predicting damper force can be identified.

Keywords

References

  1. Azar, B.F., Hadidi, A. and Rafiee, A. (2015), "An efficient simulation method for reliability analysis of systems with expensive-to-evaluate performance functions", Struct. Eng. Mech., 55(5), 979-999. https://doi.org/10.12989/sem.2015.55.5.979.
  2. Azar, B.F., Rahbari, N.M. and Talatahari, S. (2011), "Seismic mitigation of tall buildings using magnetorheological dampers", Asian J. Civil Eng., 12(5), 637-649.
  3. Bai, X.X., Cai, F.L. and Chen, P. (2019), "Resistor-capacitor (RC) operator-based hysteresis model for magnetorheological (MR) dampers", Mech. Syst. Signal Pr., 117, 157-169. https://doi.org/10.1016/j.ymssp.2018.07.050.
  4. Baradaran-nia, M., Alizadeh, G., Khanmohammadi, S. and Azar, B.F. (2012), "Optimal sliding mode control of single degree-offreedom hysteretic structural system", Commun. Nonlin. Sci. Numer. Simul., 17(11), 4455-4466. https://doi.org/10.1016/j.cnsns.2012.01.008.
  5. Battaini, M., Breitung, K., Casciati, F. and Faravelli, L. (1998), "Active control and reliability of a structure under wind excitation", J. Wind Eng. Indus. Aerodyn., 74, 1047-1055. https://doi.org/10.1016/S0167-6105(98)00096-8.
  6. Bitaraf, M., Ozbulut, O.E., Hurlebaus, S. and Barroso, L. (2010), "Application of semi-active control strategies for seismic protection of buildings with MR dampers", Eng. Struct., 32(10), 3040-3047. https://doi.org/10.1016/j.engstruct.2010.05.023.
  7. Breitung, K., Casciati, F. and Faravelli, L. (1998), "Reliability based stability analysis for actively controlled structures", Eng. Struct., 20(3), 211-215. https://doi.org/10.1016/S0141-0296(97)00071-0.
  8. Choi, K.M., Cho, S.W., Jung, H.J. and Lee, I.W. (2004), "Semiactive fuzzy control for seismic response reduction using magnetorheological dampers", Earthq. Eng. Struct. Dyn., 33(6), 723-736. https://doi.org/10.1002/eqe.372.
  9. Choi, S.B., Lee, S.K. and Park, Y.P. (2001), "A hysteresis model for the field-dependent damping force of a magnetorheological damper", J. Sound Vib., 245, 375-383. https://doi.org/10.1006/jsvi.2000.3539.
  10. Der Kiureghian, A. (2005), Engineering Design Reliability Handbook, CRC Press, Boca Raton, FL, USA.
  11. Ditlevsen, O. (1982), "Model uncertainty in structural reliability", Struct. Saf., 1(1), 73-86. https://doi.org/10.1016/0167-4730(82)90016-9.
  12. Du, X. (2005), First-Order and Second-Reliability Methods, in Probabilistic Engineering Design, Missouri S&T, Rolla, ME, USA.
  13. Dyke, S. and Spencer Jr., B. (1996), "Seismic response control using multiple MR dampers", Proceedings of the 2nd International Workshop on Structural Control, Hong Kong.
  14. Dyke, S., Spencer Jr., B., Sain, M. and Carlson, J. (1996), "Modeling and control of magnetorheological dampers for seismic response reduction", Smart Mater. Struct., 5(5), 565. https://doi.org/10.1088/0964-1726/5/5/006.
  15. Farsani, A.M. and Keshtegar, B. (2015), "Reliability analysis of corroded reinforced concrete beams using enhanced HL-RF method", Civil Eng. Infrastr. J., 48(2), 297-304. https://dx.doi.org/10.7508/ceij.2015.02.006.
  16. Gavin, H.P. and Zaicenco, A. (2007), "Performance and reliability of semi-active equipment isolation", J. Sound Vib., 306(1-2), 74-90. https://doi.org/10.1016/j.jsv.2007.05.039.
  17. Gong, J.X. and Yi, P. (2011), "A robust iterative algorithm for structural reliability analysis", Struct. Multidisc. Optim., 43(4), 519-527. https://doi.org/10.1007/s00158-010-0582-y.
  18. Gong, J.X., Yi, P. and Zhao, N. (2014), "Non-gradient-based algorithm for structural reliability analysis", J. Eng. Mech., 140(6), 04014029. http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000722.
  19. Goswami, S., Ghosh, S. and Chakraborty, S. (2016), "Reliability analysis of structures by iterative improved response surface method", Struct. Saf., 60, 56-66. https://doi.org/10.1016/j.strusafe.2016.02.002.
  20. Graczykowski, C. and Pawlowski, P. (2017), "Exact physical model of magnetorheological damper", App. Math. Model., 47, 400-424. https://doi.org/10.1016/j.apm.2017.02.035.
  21. Guo, A., Xu, Y. and Wu, B. (2002), "Seismic reliability analysis of hysteretic structure with viscoelastic dampers", Eng. Struct., 24(3), 373-383. https://doi.org/10.1016/S0141-0296(01)00103-1.
  22. Hadidi, A., Azar, B.F. and Rafiee, A. (2016), "Reliability-based design of semi-rigidly connected base-isolated buildings subjected to stochastic near-fault excitations", Earthq. Struct., 11(4), 701-721. https://doi.org/10.12989/eas.2016.11.4.701.
  23. Hadidi, A., Azar, B.F. and Rafiee, A. (2017), "Efficient response surface method for high-dimensional structural reliability analysis", Struct. Saf., 68, 15-27. https://doi.org/10.1016/j.strusafe.2017.03.006.
  24. Hao, G.L., Wang, W.Z., Liang, X.L. and Wang, H.B. (2013), "The new approximate calculation method for the first-order reliability", Adv. Mater. Res., 694-697, 891-895. https://doi.org/10.4028/www.scientific.net/AMR.694-697.891.
  25. Hasofer, A.M. and Lind, N.C. (1974), "Exact and invariant second-moment code format", J. Eng. Mech. Div., 100(1), 111-121. https://doi.org/10.1061/JMCEA3.0001848
  26. Hong, S., Wereley, N., Choi, Y. and Choi, S. (2008), "Analytical and experimental validation of a nondimensional Bingham model for mixed-mode magnetorheological dampers", J. Sound Vib., 312(3), 399-417. https://doi.org/10.1016/j.jsv.2007.07.087.
  27. Keshtegar, B. (2016), "Chaotic conjugate stability transformation method for structural reliability analysis", Comput. Meth. Appl. Mech. Eng., 310, 866-885. https://doi.org/10.1016/j.cma.2016.07.046.
  28. Kiureghian, A.D. and Stefano, M.D. (1991), "Efficient algorithm for second-order reliability analysis", J. Eng. Mech., 117(12), 2904-2923. http://dx.doi.org/10.1061/(ASCE)0733-9399(1991)117: 12(2904).
  29. Kwok, N., Ha, Q., Nguyen, T., Li, J. and Samali, B. (2006), "A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization", Sens. Act. A: Phys., 132(2), 441-451. https://doi.org/10.1016/j.sna.2006.03.015.
  30. Lee, J.O., Yang, Y.S. and Ruy, W.S. (2002), "A comparative study on reliability-index and target-performance-based probabilistic structural design optimization", Comput. Struct., 80(3-4), 257-269. https://doi.org/10.1016/S0045-7949(02)00006-8.
  31. Liu, P.L. and Der Kiureghian, A. (1991), "Optimization algorithms for structural reliability", Struct. Saf., 9(3), 161-177. https://doi.org/10.1016/0167-4730(91)90041-7.
  32. Makhduomi, H., Keshtegar, B. and Shahraki, M. (2017), "A comparative study of first-order reliability method-based steepest descent search directions for reliability analysis of steel structures", Adv. Civil Eng., 2017, 8643801. https://doi.org/10.1155/2017/8643801.
  33. Meng, Z., Li, G., Yang, D. and Zhan, L. (2017), "A new directional stability transformation method of chaos control for first-order reliability analysis", Struct. Multidisc. Optim., 55(2), 601-612. https://doi.org/10.1007/s00158-016-1525-z.
  34. Mohajer Rahbari, N., Azar, B.F., Talatahari, S. and Safari, H. (2013), "Semi-active direct control method for seismic alleviation of structures using MR dampers", Struct. Control Hlth. Monit., 20(6), 1021-1042. https://doi.org/10.1002/stc.1515.
  35. Mrabet, E., Guedri, M., Ichchou, M. and Ghanmi, S. (2015), "Stochastic structural and reliability based optimization of tuned mass damper", Mech. Syst. Signal Pr., 60, 437-451. https://doi.org/10.1016/j.ymssp.2015.02.014.
  36. Rackwitz, R. and Flessler, B. (1978), "Structural reliability under combined random load sequences", Comput. Struct., 9(5), 489-494. https://doi.org/10.1016/0045-7949(78)90046-9.
  37. Rashki, M., Miri, M. and Moghaddam, M.A. (2012), "A new efficient simulation method to approximate the probability of failure and most probable point", Struct. Saf., 39, 22-29. https://doi.org/10.1016/j.strusafe.2012.06.003.
  38. Santosh, T., Saraf, R., Ghosh, A. and Kushwaha, H. (2006), "Optimum step length selection rule in modified HL-RF method for structural reliability", Int. J. Press. Ves. Pip., 83(10), 742-748. https://doi.org/10.1016/j.ijpvp.2006.07.004.
  39. Soong, T. and Spencer Jr., B. (2002), "Supplemental energy dissipation: state-of-the-art and state-of-the-practice", Eng. Struct., 24(3), 243-259. https://doi.org/10.1016/S0141-0296(01)00092-X.
  40. Spencer Jr., B., Dyke, S., Sain, M. and Carlson, J. (1997), "Phenomenological model for magnetorheological dampers", J. Eng. Mech., 123(3), 230-238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230).
  41. Spencer Jr., B., Sain, M., Kantor, J. and Montemagno, C. (1992), "Probabilistic stability measures for controlled structures subject to real parameter uncertainties", Smart Mater. Struct., 1(4), 294. https://doi.org/10.1088/0964-1726/1/4/004.
  42. Spencer, B., Kaspari, D. and Sain, M. (1994), "Structural control design: a reliability-based approach", Proceedings of 1994 American Control Conference, Baltimore, June.
  43. Vazirizade, S.M., Nozhati, S. and Zadeh, M.A. (2017), "Seismic reliability assessment of structures using artificial neural network", J. Build. Eng., 11, 230-235. https://doi.org/10.1016/j.jobe.2017.04.001.
  44. Venini, P. and Mariani, C. (1999), "Reliability as a measure of active control effectiveness", Comput. Struct., 73(1-5), 465-473. https://doi.org/10.1016/S0045-7949(98)00275-2.
  45. Yan, G. and Zhou, L.L. (2006), "Integrated fuzzy logic and genetic algorithms for multi-objective control of structures using MR dampers", J. Sound Vib., 296(1-2), 368-382. https://doi.org/10.1016/j.jsv.2006.03.011.
  46. Yang, G., Spencer Jr, B., Carlson, J. and Sain, M. (2002), "Largescale MR fluid dampers: modeling and dynamic performance considerations", Engi. Struct., 24 (3), 309-323. https://doi.org/10.1016/S0141-0296(01)00097-9.
  47. Zafarani, M.M. and Halabian, A.M. (2018), "Supervisory adaptive nonlinear control for seismic alleviation of inelastic asymmetric buildings equipped with MR dampers", Eng. Struct., 176, 849-858. https://doi.org/10.1016/j.engstruct.2018.09.045.