References
- Adams, D.F. and Miller, A.K. (1977), "Hygrothermal microstresses in a unidirectional composite exhibiting inelastic material behaviour", Compos. Mater., 11, 285-299. https://doi.org/10.1177/002199837701100304.
- Akbarzadeh, A.H. and Chen, Z.T. (2012), "Magnetoelectroelastic behavior of rotating cylinders resting on an elastic foundation under hygrothermal loading", Smart Mater. Struct., 2, 125013. https://doi.org/10.1088/0964-1726/21/12/125013
- Akbarzadeh, A.H. and Chen, Z.T. (2013), "Hygrothermal stresses in one dimensional functionally graded piezoelectric media in constant magnetic field", Compos. Struct., 97, 317-331. https://doi.org/10.1016/j.compstruct.2012.09.058.
- Akbarzadeh, A.H. and Pasini, D. (2014), "Multiphysics of multilayered and functionally graded cylinders under prescribed hygrothermomagnetoelectromechanical loading", J. Appl. Mech.-T ASME, 81(4), 041018. doi: 10.1115/1.4025529.
- Akbarzadeh, A. and Chen, Z. (2014), "Thermo-magneto-electroelastic response of rotating hollow cylinders", Mech. Adv. Mater. Struct., 21(1), 67-80. https://doi.org/10.1080/15376494.2012.677108.
- Alaimo, A., Milazzo, A. and Orlando, C. (2013), "A four-node MITC finite element for magneto-electro-elastic multilayered plates", Comput.Struct., 129, 120-133. https://doi.org/10.1016/j.compstruc.2013.04.014.
- Annigeri, A.R, Ganesan, N. and Swarnamani, S. (2007), "Free vibration behavior of multiphase and layered magneto-electroelastic beam", J. Sound Vib., 299(1-2), 44-63. https://doi.org/10.1016/j.jsv.2006.06.044.
- Badri, T.M. and Al-Kayiem, H.H. (2013), "Analytical solution for simply supported and multilayered Magneto-Electro-Elastic Plates", Asian J. Sci. Res., 6, 236-244. https://doi.org/10.3923/ajsr.2013.236.244
- Benedetti, I. and Milazzo, A. (2017), Advanced models for smart multilayered plates based on Reissner Mixed Variational Theorem", Compos. Part B: Eng., 119, 215-229. https://doi.org/10.1016/j.compositesb.2017.03.007.
- Bhangale, R.K. and Ganesan, N. (2006), "Free vibration of simply supported functionally graded and layered magneto-electroelastic plates by finite element method", J. Sound Vib., 294(4-5), 1016-1038. https://doi.org/10.1016/j.jsv.2005.12.030.
- Chen, J.Y., Heyliger, P.R. and Pan, E. (2014), "Free vibration of three-dimensional multilayered magneto-electro-elastic plates under combined clamped/free boundary conditions", J. Sound Vib., 333(17), 4017-4029. https://doi.org/10.1016/j.jsv.2014.03.035.
- Chen, J., Chen, H., Pan, E. and Heyliger, P.R. (2007), "Modal analysis of magneto-electro-elastic plates using the state-vector approach", J. Sound Vib., 304(3-5), 722-734. https://doi.org/10.1016/j.jsv.2007.03.021.
- Daga, A., Ganesan, N. and Shankar, K. (2009), "Behavior of magneto-electro-elastic sensors under transient mechanical loading", Sensor. Actuat. A: Phys., 150(1), 46-55. https://doi.org/10.1016/j.sna.2008.11.035.
- Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higherorder shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772. https://doi.org/10.1080/15376494.2016.1196781.
- Ebrahimi, F. and Barati, M.R. (2016), "Electromechanical buckling behavior of smart piezoelectrically actuated higherorder size-dependent graded nanoscale beams in thermal environment", Int. J. Smart Nano Mater., 7(2), 69-90. https://doi.org/10.1080/19475411.2016.1191556.
- Huang, D.J,, Ding, H.J. and Chen, W.Q. (2007), "Analytical solution for functionally graded magneto-electro-elastic plane beams", Int. J. Eng. Sci., 45(2-8) , 467-485. https://doi.org/10.1016/j.ijengsci.2007.03.005.
- Kondaiah, P., Shankar, K. and Ganesan, N. (2015), "Pyroeffects on magneto-electro-elastic sensor bonded on mild steel cylindrical shell", Smart Struct. Syst., 16(3), 537-554. https://doi.org/10.12989/sss.2015.16.3.537.
- Kondaiah, P. and Shankar, K. (2017), "Pyroeffects on Magneto-Electro-Elastic Sensor patch subjected to thermal load", Smart Struct. Syst., 19(3), 299-307. https://doi.org/10.12989/sss.2017.19.3.299.
- Kondaiah, P., Shankar, K. and Ganesan, N. (2012), "Studies on magneto-electro-elastic cantilever beam under thermal environment", Coupled Syst. Mech., 1(2), 205-217. https://doi.org/10.12989/csm.2012.1.2.205.
- Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Steadystate analysis of a three-layered electro-magneto-elastic strip in a thermal environment", Smart Mater. Struct., 16(2), 282-295. https://doi.org/10.1088/0964-1726/16/2/006
- Lage, R.G., Soares, C.M.M., Soares, C.A.M. and Reddy, J.N. (2004), "Layerwise partial mixed finite element analysis of magneto-electro-elastic plates", Comput. Struct., 82(17-19), 1293-1301. https://doi.org/10.1016/j.compstruc.2004.03.026.
- Milazzo, A. (2013), "A one-dimensional model for dynamic analysis of generally layered magneto-electro-elastic beams", J. Sound Vib., 332(2), 465-483. https://doi.org/10.1016/j.jsv.2012.09.004.
- Milazzo, A. (2014a), "Layer-wise and equivalent single layer models for smart multilayered plates", Compos. Part B: Eng., 67, 62-75. https://doi.org/10.1016/j.compositesb.2014.06.021.
- Milazzo, A. (2014b), "Refined equivalent single layer formulations and finite elements for smart laminates free vibrations", Compos. Part B: Eng., 61, 238-253. https://doi.org/10.1016/j.compositesb.2014.01.055.
- Moita, J.M.S., Soares, C.M.M. and Soares, C.A.M. (2009), "Analyses of magneto-electro-elastic plates using a higher order finite element model", Compos. Struct., 91(4), 421-426. https://doi.org/10.1016/j.compstruct.2009.04.007.
- Ootao, Y. and Tanigawa, Y. (2005), "Transient analysis of multilayered magneto-electro-thermoelastic strip due to nonuniform heat supply", Compos. Struct., 68(4), 471-480. https://doi.org/10.1016/j.compstruct.2004.04.013.
- Pan, E. (2001), "Exact solution for simply supported and multilayered magneto-electro-elastic plates", J. Appl. Mech.- T. ASME, 68(4), 608-618. doi:10.1115/1.1380385.
- Pan, E. and Heyliger, P.R. (2002), "Free vibrations of simply supported and multilayered magneto-electro-elastic plates", J. Sound Vib., 252(3), 429-442. https://doi.org/10.1006/jsvi.2001.3693.
- Pan, E. and Han, F. (2005), "Exact solutions for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43(3-4), 321-339. https://doi.org/10.1016/j.ijengsci.2004.09.006.
- Pan, E. and Waksmanski, N. (2016), "Deformation of a layered magnetoelectroelastic simply-supported plate with nonlocal effect, an analytical three-dimensional solution", Smart Mater. Struct., 25(9), 095013. https://doi.org/10.1088/0964-1726/25/9/095013
- Ramirez, F., Heyliger, P.R. and Pan, E. (2006a), "Free vibration response of two-dimensional magneto-electro-elastic laminated plates", J. Sound Vib., 292(3-5), 626-644. https://doi.org/10.1016/j.jsv.2005.08.004.
- Ramirez, F., Heyliger, P.R. and Pan, E. (2006b), "Discrete layer solution to free vibrations of functionally graded magnetoelectro-elastic plates", Mech. Adv. Mater. Struct., 13(3), 249-266. https://doi.org/10.1080/15376490600582750.
- Razavi, S. and Shooshtari, A. (2015), "Nonlinear free vibration of magneto-electro-elastic rectangular plates", Compos. Struct., 119, 377-384. https://doi.org/10.1016/j.compstruct.2014.08.034.
- Reddy, J.N. (1997), Mechanics of Laminated Composite Plates, CRC Press, Boca Raton, FL, USA.
- Saadatfar, M. and Khafri, A.M. (2014), "Hygrothermomagnetoelectroelastic analysis of a functionally graded magnetoelectroelastic hollow sphere resting on an elastic foundation", Smart Mater. Struct., 23(3), 035004. https://doi.org/10.1088/0964-1726/23/3/035004
- Saadatfar, M. and Khafri, A.M., (2015). "Electromagnetothermoelastic behavior of a rotating imperfect hybrid functionally graded hollow cylinder", Smart Struct. Syst., 15(6), 1411-1437. https://doi.org/10.12989/sss.2015.15.6.1411.
- Shooshtari, A. and Razavi, S. (2016), "Large-amplitude free vibration of magneto-electro-elastic curved panels", Sci. Iran. 23(6), 2606-2615.
- Shooshtari, A. and Razavi, S. (2015a), "Large amplitude free vibration of symmetrically laminated magneto-electro-elastic rectangular plates on Pasternak type foundation", Mech. Res. Commun., 69, 103-113. https://doi.org/10.1016/j.mechrescom.2015.06.011.
- Sladek, J., Sladek, V., Krahulec, S. and Pan, E. (2013a), "The MLPG analyses of large deflections of magnetoelectroelastic plates", Eng. Anal. Bound. Elem., 37(4), 673-682. https://doi.org/10.1016/j.enganabound.2013.02.001.
- Sunar, M., Al-Garni, A.Z., Ali, M.H. and Kahraman, R. (2002), "Finite element modeling of thermopiezomagnetic smart structures", AIAA J., 40, 1845-1851. https://doi.org/10.2514/2.1862.
- Vinyas, M., Piyush, J.S. and Kattimani, S.C. (2017a), "Influence of coupled fields on free vibration and static behavior of functionally graded magneto-electro-thermo-elastic plate", J. Intel. Mat. Syst. Str., 29(7), 1430-1455. https://doi.org/10.1177/1045389X17740739.
- Vinyas, M. and Kattimani, S.C. (2017b), "Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads", Compos. Struct., 163, 216-237. https://doi.org/10.1016/j.compstruct.2016.12.040.
- Vinyas, M. and Kattimani, S.C. (2017c), "A Finite element based assessment of static behavior of multiphase magneto-electroelastic beams under different thermal loading", Struct. Eng. Mech., 62(5), 519-535. https://doi.org/10.12989/sem.2017.62.5.519.
- Vinyas, M. and Kattimani, S.C. (2017d), "Static behavior of thermally loaded multilayered Magneto-Electro-Elastic beam", Struct. Eng. Mech., 63(4), 481-495. https://doi.org/10.12989/sem.2017.63.4.481.
- Vinyas, M. and Kattimani, S.C. (2017e), "Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment", Coupled Syst. Mech., 6(3), 351-368. https://doi.org/10.12989/csm.2017.6.3.351.
- Vinyas, M. and Kattimani, S.C. (2017f), "A 3D finite element static and free vibration analysis of magneto-electro-elastic beam", Coupled Syst. Mech., 6(4), 465-485. https://doi.org/10.12989/csm.2017.6.4.465.
- Vinyas, M. and Kattimani, S.C. (2017g), "Static analysis of stepped functionally graded magneto-electro-elastic plates in thermal environment: A finite element study", Compos. Struct., 178, 63-85. https://doi.org/10.1016/j.compstruct.2017.06.068.
- Vinyas, M. and Kattimani, S.C. (2017h), "Hygrothermal analysis of magneto-electro-elastic plate using 3D finite element analysis", Compos. Struct., 180, 617-637. https://doi.org/10.1016/j.compstruct.2017.08.015.
- Vinyas, M. and Kattimani, S.C. (2018a), "Investigation of the effect of BaTiO3/CoFe2O4 particle arrangement on the static response of magneto-electro-thermo-elastic plates", Compos. Struct., 185, 51-64. https://doi.org/10.1016/j.compstruct.2017.10.073.
- Vinyas, M. and Kattimani, S.C. (2018b), "Finite element evaluation of free vibration characteristics of magneto-electroelastic rectangular plates in hygrothermal environment using higher-order shear deformation theory", Compos. Struct., 202, 1339-1352. https://doi.org/10.1016/j.compstruct.2018.06.069.
- Vinyas, M, Kattimani, S.C., Loja, M.A.R. and Vishwas, M. (2018a), "Effect of BaTiO3/CoFe2O4micro-topological textures on the coupledstatic behaviour of magneto-electrothermo-elastic beams indifferent thermal environment", Mater. Res. Express, 5(12), 125702. https://doi.org/10.1088/2053-1591/aae0c8
- Vinyas, M., Kattimani, S.C. and Joladarashi, S. (2018b), "Hygrothermal coupling analysis of magneto-electroelastic beams using finite element methods", J. Ther. Stresses, 41(8), 1063-1079. https://doi.org/10.1080/01495739.2018.1447856.
- Vinyas, M., Nischith G., Loja, M.A.R., Ebrahimi, F. and Duc, N.D. (2019), "Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory", Compos. Struct., 214, 132-142. https://doi.org/10.1016/j.compstruct.2019.02.010.
- Vinyas, M. (2019a), "A higher order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods", Compos. Part B, 158, 286-301. https://doi.org/10.1016/j.compositesb.2018.09.086
- Vinyas, M. (2019b), "Vibration control of skew magneto-electroelastic plates using active constrained layer damping", Compos. Struct., 208, 600-617. https://doi.org/10.1016/j.compstruct.2018.10.046.
- Wang, R. and Pan, E. (2011), "Three-dimensional modeling of functionally graded multiferroic composites", Mech. Adv. Mater. Struct., 18(1), 68-76. https://doi.org/10.1080/15376494.2010.519227.
- Xin, L. and Hu, Z. (2015), "Free vibration of simply supported and multilayered magneto-electro-elastic plates", Compos. Struct., 121, 344-350. https://doi.org/10.1016/j.compstruct.2014.11.030.
- Youssef, H.M. (2005), "Generalized thermoelasticity of an infinite body with a cylindrical cavity and variable material properties", J. Therm. Stresses, 28(5), 521-532. https://doi.org/10.1080/01495730590925029.
Cited by
- Thermal response analysis of multi-layered magneto-electro-thermo-elastic plates using higher order shear deformation theory vol.73, pp.6, 2019, https://doi.org/10.12989/sem.2020.73.6.667